精英家教網 > 高中數學 > 題目詳情
已知傾斜角為45°的直線l過點A(1,-2)和點B,點B在第一象限,|AB|=3
2

(Ⅰ)求點B的坐標;
(Ⅱ)若直線l與雙曲線C:
x2
a2
-y2=1(a>0)
相交于E、F兩點,且線段EF的中點坐標為(4,1),求a的值.
分析:(I)先設直線AB方程為y=x-3,設點B(x,y),由
y=x-3
(x-1)2+(y+2)2=18
及B在第一象限即可求出答案.
(II)先聯立直線方程與雙曲線方程,消元轉化為:(
1
a2
-1)x2+6x-10=0
,再由韋達定理求解.
解答:解:(I)因為傾斜角為45°的直線l過點A(1,-2)和點B,
所以直線AB方程為y=x-3.
設點B(x,y),
由題意可得:
y=x-3
(x-1)2+(y+2)2=18
,
因為x>0,y>0,
所以解得x=4,y=1,
所以點B的坐標為(4,1).
(II)由題意可得:聯立直線與雙曲線的方程
y=x-3
x2
a2
-y2=1
,
所以可得(
1
a2
-1)x2+6x-10=0
,
設E(x1,y1),F(x2,y2),
因為線段EF的中點坐標為(4,1),
所以x1+x2=-
6a2
1-a2
=4

所以a=2.
點評:本題主要考查直線與圓的位置關系,中點坐標公式與韋達定理以及兩點間的距離公式.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知傾斜角為45°的直線l過點A(1,-2)和點B,B在第一象限,|AB|=3
2

(1)求點B的坐標;
(2)若直線l與雙曲線C:
x2
a2
-y2=1
(a>0)相交于E、F兩點,且線段EF的中點坐標為(4,1),求a的值;
(3)對于平面上任一點P,當點Q在線段AB上運動時,稱|PQ|的最小值為P與線段AB的距離.已知點P在x軸上運動,寫出點P(t,0)到線段AB的距離h關于t的函數關系式.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知傾斜角為45°的直線經過A(2,4),B(1,m)兩點,則m=( 。
A、3B、-3C、5D、-1

查看答案和解析>>

科目:高中數學 來源:蘇州模擬 題型:解答題

已知傾斜角為45°的直線l過點A(1,-2)和點B,點B在第一象限,|AB|=3
2

(Ⅰ)求點B的坐標;
(Ⅱ)若直線l與雙曲線C:
x2
a2
-y2=1(a>0)
相交于E、F兩點,且線段EF的中點坐標為(4,1),求a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

22.已知傾斜角為45°的直線l過點A(1,-2)和點B,B在第一象限,|AB|=3.

(1)求點B的坐標;

(2)若直線l與雙曲線C:y2=1(a>0)相交于E、F兩點,且線段EF的 中點坐標為(4,1),求a的值;

(3)對于平面上任一點P,當點Q在線段AB上運動時,稱|PQ|的最小值為與線段AB的距離.已知點Px軸上運動,寫出點P(t,0)到線段AB的 距離h關于t的函數關系式.

查看答案和解析>>

同步練習冊答案