【題目】已知橢圓上兩個不同的點、關于直線對稱.
(1)若已知,為橢圓上動點,證明:;
(2)求實數(shù)的取值范圍;
(3)求面積的最大值(為坐標原點).
【答案】(1)證明見解析;(2);(3).
【解析】
(1)設點,則有,代入橢圓的方程得出,然后利用兩點間的距離公式和二次函數(shù)的基本性質可求出的最大值,從而證明;
(2)由、關于直線對稱,可得出直線與直線,從而可得出直線的斜率為,設直線的方程為,設點、,將直線的方程與橢圓方程聯(lián)立,得出,并列出韋達定理,求出線段的中點,再由點在直線上列出不等式,結合可求出的取值范圍;
(3)令,可得出直線的方程為,利用韋達定理結合弦長公式計算出,利用點到直線的距離公式計算出的高的表達式,然后利用三角形的面積公式得出面積的表達式,利用基本不等式可求出面積的最大值.
(1)設,則,得,于是
因,所以當時,,即;
(2)由題意知,可設直線的方程為.
由消去,得.
因為直線與橢圓有兩個不同的交點,
所以,,即,①
由韋達定理得,,
,所以,線段的中點.
將中點代入直線方程,解得②,
將②代入①得,化簡得.
解得或,因此,實數(shù)的取值范圍是;
(3)令,即,且.
則,,
則,
且到直線的距離為,
設的面積為,所以,
當且僅當時,等號成立,故面積的最大值為.
科目:高中數(shù)學 來源: 題型:
【題目】已知點F1,F(xiàn)2分別為橢圓的左、右焦點,點P為橢圓上任意一點,P到焦點F2的距離的最大值為,且△PF1F2的最大面積為1.
(Ⅰ)求橢圓C的方程.
(Ⅱ)點M的坐標為,過點F2且斜率為k的直線L與橢圓C相交于A,B兩點.對于任意的是否為定值?若是求出這個定值;若不是說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線(),其準線方程,直線過點(),且與拋物線交于、兩點,為坐標原點.
(1)求拋物線方程,并注明:的值與直線傾斜角的大小無關;
(2)若為拋物線上的動點,記的最小值為函數(shù),求的解析式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)在上有定義,實數(shù)和滿足,若在區(qū)間上不存在最小值,則稱在上具有性質.
(1)當,且在區(qū)間上具有性質時,求常數(shù)的取值范圍;
(2)已知(),且當時,,判別在區(qū)間上是否具有性質,試說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】私家車的尾氣排放是造成霧霾天氣的重要因素之一,因此在生活中我們應該提倡低碳生活,少開私家車,盡量選擇綠色出行方式,為預防霧霾出一份力.為此,很多城市實施了機動車車尾號限行,我市某報社為了解市區(qū)公眾對“車輛限行”的態(tài)度,隨機抽查了人,將調查情況進行整理后制成下表:
年齡(歲) | ||||||
頻數(shù) | ||||||
贊成人數(shù) |
()完成被調查人員的頻率分布直方圖.
()若從年齡在,的被調查者中各隨機選取人進行追蹤調查,求恰有人不贊成的概率.
()在在條件下,再記選中的人中不贊成“車輛限行”的人數(shù)為,求隨機變量的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右頂點分別為,,左、右焦點分別為,,離心率為,點,為線段的中點.
()求橢圓的方程.
()若過點且斜率不為的直線與橢圓交于、兩點,已知直線與相交于點,試判斷點是否在定直線上?若是,請求出定直線的方程;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設,命題p:函數(shù)在內單調遞增;q:函數(shù)僅在處有極值.
(1)若命題q是真命題,求a的取值范圍;
(2)若命題是真命題,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設拋物線的方程為,其中常數(shù),是拋物線的焦點.
(1)若直線被拋物線所截得的弦長為6,求的值;
(2)設是點關于頂點的對稱點,是拋物線上的動點,求的最大值;
(3)設,、是兩條互相垂直,且均經(jīng)過點的直線,與拋物線交于點、,與拋物線交于點、,若點滿足,求點的軌跡方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com