長方形ABCD,AB=2
2
,BC=1,以AB的中點O為原點建立如圖所示的平面直角坐標系.
(1)求以A、B為焦點,且過C、D兩點的橢圓的標準方程:
(2)過點p(0,2)的直線m與(1)中橢圓只有一個公共點,求直線m的方程:
(3)過點p(0,2)的直線l交(1)中橢圓與M,N兩點,是否存在直線l,使得以弦MN為直徑的圓恰好過原點?若存在,直線l的方程;若不存在,說明理由.
(1)由題意可得點A,B,C的坐標分別為(-
2
,0),(
2
,0),(
2
,1).
設(shè)橢圓的標準方程是
x2
a2
+
y2
b2
=1(a>b>0).
則2a=AC+BC,
即2a=
(2
2
)2+1
+1=4>2
2
,所以a=2.
所以b2=a2-c2=4-2=2.
所以橢圓的標準方程是
x2
4
+
y2
2
=1.
(2)設(shè)直線m的方程為y=kx+2,
y=kx+2
x2
4
+
y2
2
=1
,得(2k2+1)x2+8kx+4=0,
∵直線m與橢圓只有一個公共點,
∴△=64k2-16(k2+1)=0,解得k=±
3
3

∴直線m的方程為y=
3
3
x,或y=-
3
3
x.
(3)由題意知,直線l的斜率存在,可設(shè)直線l的方程為y=kx+2.
y=kx+2
x2+2y2=4
,得(1+2k2)x2+8kx+4=0.
因為M,N在橢圓上,
所以△=64k2-16(1+2k2)>0.
設(shè)M,N兩點坐標分別為(x1,y1),(x2,y2).
則x1+x2=-
8k
1+2k2
,x1x2=
4
1+2k2

若以MN為直徑的圓恰好過原點,則
OM
ON

所以x1x2+y1y2=0,
所以,x1x2+(kx1+2)(kx2+2)=0,
即(1+k2)x1x2+2k(x1+x2)+4=0,
所以,
4(1+k2)
1+2k2
-
16k2
1+2k2
+4=0,即
8-4k2
1+2k2
=0,
得k2=2,k=±
2

經(jīng)驗證,此時△=48>0.
所以直線l的方程為y=
2
x+2,或y=-
2
x+2.
即所求直線存在,其方程為y=
2
x+2,或y=-
2
x+2.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題12分)已知橢圓C的焦點在x軸上,它的一個頂點恰好是拋物線的焦點,離心率。(1)求橢圓的標準方程;(2)過橢圓C的右焦點作直線交橢圓C于A、B兩點,交y軸于M,若為定值嗎?證明你的結(jié)論。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知不過坐標原點O的直線L與拋物線y2=2x相交于A、B兩點,且OA⊥OB,OE⊥AB于E.
①求證:直線L過定點;
②求點E的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓
x2
2
+y2=1,其右焦點為F,直線l經(jīng)過點F與橢圓交于A,B
兩點,且|AB|=
4
2
3

(1)求直線l的方程;
(2)求△OAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓C:
x2
9
+
y2
4
=1
,斜率為k的直線l與橢圓相交于點M,N,點A是線段MN的中點,直線OA(O為坐標原點)的斜率是k′,那么kk′=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,P是拋物線C:x2=2y上一點,F(xiàn)為拋物線的焦點,直線l過點P且與拋物線交于另一點Q,已知P(x1,y1),Q(x2,y2).
(1)若l經(jīng)過點F,求弦長|PQ|的最小值;
(2)設(shè)直線l:y=kx+b(k≠0,b≠0)與x軸交于點S,與y軸交于點T
①求證:
|ST|
|SP|
+
|ST|
|SQ|
=|b|(
1
y1
+
1
y2
)

②求
|ST|
|SP|
+
|ST|
|SQ|
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標系xOy中,已知橢圓E:
x2
a2
+
y2
b2
=1
(a>b>0)的離心率為
1
2
,一條準線方程為x=4.
(1)求橢圓E的標準方程;
(2)若點A,B分別是橢圓E的左、右頂點,直線l經(jīng)過點B且垂直于x軸,點P是橢圓上異于A,B的任意一點,直線AP交l于點M,設(shè)直線OM的斜率為k1,直線BP的斜率為k2,求證:k1k2為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)拋物線y2=2px(p為常數(shù))的準線與X軸交于點K,過K的直線l與拋物線交于A、B兩點,則
OA
OB
=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線與橢圓
x2
4
+y2=1
共焦點,它們的離心率之和為
3
3
2

(1)求橢圓與雙曲線的離心率e1、e2
(2)求雙曲線的標準方程與漸近線方程;
(3)已知直線l:y=
1
2
x+m
與橢圓有兩個交點,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案