【題目】a,b為空間中兩條互相垂直的直線,等腰直角三角形ABC的直角邊AC所在直線與a,b都垂直,斜邊AB以直線AC為旋轉(zhuǎn)軸旋轉(zhuǎn),若直線AB與a成角為60,則AB與b成角為
A. B. C. D.
【答案】A
【解析】分析:由題意知,a、b、AC三條直線兩兩相互垂直,構(gòu)建如圖所示的邊長(zhǎng)為1的正方體,|AC|=1,|AB|=,斜邊AB以直線AC為旋轉(zhuǎn)軸,則A點(diǎn)保持不變,B點(diǎn)的運(yùn)動(dòng)軌跡是以C為圓心,1為半徑的圓,以C坐標(biāo)原點(diǎn),以CD為x軸,CB為y軸,CA為z軸,建立空間直角坐標(biāo)系,利用向量法能求出結(jié)果.
詳解:由題意知,a、b、AC三條直線兩兩相互垂直,畫出圖形如圖,
不妨設(shè)圖中所示正方體邊長(zhǎng)為1,故|AC|=1,|AB|=,
斜邊AB以直線AC為旋轉(zhuǎn)軸,則A點(diǎn)保持不變,
B點(diǎn)的運(yùn)動(dòng)軌跡是以C為圓心,1為半徑的圓,
以C坐標(biāo)原點(diǎn),以CD為x軸,CB為y軸,CA為z軸,建立空間直角坐標(biāo)系,
則D(1,0,0),A(0,0,1),直線a的方向單位向量=(0,1,0),||=1,
直線b的方向單位向量=(1,0,0),||=1,
設(shè)B點(diǎn)在運(yùn)動(dòng)過程中的坐標(biāo)中的坐標(biāo)B′(cosθ,sinθ,0),
其中θ為B′C與CD的夾角,θ∈[0,2π),
∴AB′在運(yùn)動(dòng)過程中的向量,=(cosθ,sinθ,﹣1),||=,
與所成夾角為β∈[0,],
cosβ=,
當(dāng)與夾角為60°時(shí),即,
|sinθ|=,
∵cos2θ+sin2θ=1,∴cosβ=|cosθ|=,
∵β∈[0,],∴β=,此時(shí)AB與b成角為60°.
故答案為:A
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)的定義域?yàn)椋?/span>﹣∞,0)∪(0,+∞),f(x)是奇函數(shù),且當(dāng)x>0時(shí),f(x)=x2﹣x+a,若函數(shù)g(x)=f(x)﹣x的零點(diǎn)恰有兩個(gè),則實(shí)數(shù)a的取值范圍是( )
A.a<0B.a≤0C.a≤1D.a≤0或a=1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,命題方程表示焦點(diǎn)在軸上的橢圓,命題方程表示雙曲線.
(1)若命題是真命題,求實(shí)數(shù)的范圍;
(2)若命題“或”為真命題,“且”是假命題,求實(shí)數(shù)的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果對(duì)定義在R上的函數(shù),對(duì)任意兩個(gè)不相等的實(shí)數(shù)都有
① ② ③ ④以上函數(shù)是“”的所有序號(hào)為_______________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】公元263年左右,我國(guó)數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無限增加時(shí),多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值3.14,這就是著名的“徽率”.如圖是利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,則輸出n的值為( )(參考數(shù)據(jù):sin15°=0.2588,sin7.5°=0.1305)
A. 12B. 24C. 48D. 96
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓與直線相切于點(diǎn),圓心在軸上.
(1)求圓的方程;
(2)過點(diǎn)且不與軸重合的直線與圓相交于兩點(diǎn),為坐標(biāo)原點(diǎn),直線分別與直線相交于兩點(diǎn),記,的面積分別是,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓過點(diǎn)且離心率為.
(1)求橢圓C的方程;
(2)是否存在過點(diǎn)的直線與橢圓C相交于A,B兩點(diǎn),且滿足.若存在,求出直線的方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC-A1B1C1中,D,E分別為BC,AC的中點(diǎn),AB=BC.
求證:(1)A1B1∥平面DEC1;
(2)BE⊥C1E.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com