如圖所示,已知PA是⊙O相切,A為切點(diǎn),PBC為割線,弦CD∥AP,AD、BC相交于E點(diǎn),F(xiàn)為CE上一點(diǎn),且DE2=EF•EC.
(1)求證:A、P、D、F四點(diǎn)共圓;
(2)若AE•ED=24,DE=EB=4,求PA的長(zhǎng).

【答案】分析:(1)由已知中DE2=EF•EC,我們易證明,△DEF~△CED,進(jìn)而結(jié)合CD∥AP,結(jié)合相似三角形性質(zhì),得到∠P=∠EDF,由圓內(nèi)接四邊形判定定理得到A、P、D、F四點(diǎn)共圓;
(2)由(1)中的結(jié)論,結(jié)合相交弦定理得PE•EF=AE•ED=24,結(jié)合已知條件,可求出PB,PC的長(zhǎng),代入切割線定理,即可求出PA的長(zhǎng).
解答:解(1)證明:∵DE2=EF•EC,∴,
又∠DEF=∠CED,∴△DEF~△CED,∠EDF=∠ECD,
又∵CD∥PA,∴∠ECD=∠P
故∠P=∠EDF,所以A,P,D,F(xiàn)四點(diǎn)共圓;
(2)由(Ⅰ)及相交弦定理得PE•EF=AE•ED=24,
又BE•EC=AE•ED=24,∴EC=6,EF=,PE=9,PB=5,PC=PB+BE+EC=15,
由切割線定理得PA2=PB•PC=5×15=75,
所以PA=5為所求.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是與圓有關(guān)的比例線段,圓內(nèi)接四邊形的判定定理,其中(1)的關(guān)鍵是證得∠P=∠EDF,(2)的關(guān)鍵是求出PB,PC的長(zhǎng),為切割線定理的使用創(chuàng)造條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,已知PA是⊙O相切,A為切點(diǎn),PBC為割線,弦CD∥AP,AD、BC相交于E點(diǎn),F(xiàn)為CE上一點(diǎn),且DE2=EF•EC.
(1)求證:A、P、D、F四點(diǎn)共圓;
(2)若AE•ED=24,DE=EB=4,求PA的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年河北省高三第十次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

如圖所示,已知PA是⊙O相切,A為切點(diǎn),PBC為割線,弦CD//AP,AD、BC相交于E點(diǎn),F(xiàn)為CE上一點(diǎn),且

(1)求證:A、P、D、F四點(diǎn)共圓;

(2)若AE·ED=24,DE=EB=4,求PA的長(zhǎng)。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年河南鄭州盛同學(xué)校高三4月模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

選修4—1:幾何證明選講

如圖所示,已知PA是⊙O相切,A為切點(diǎn),PBC為割線,弦CD//AP,AD、BC相交于 E點(diǎn),F(xiàn)為CE上一點(diǎn),且

(1)求證:A、P、D、F四點(diǎn)共圓;

(2)若AE·ED=24,DE=EB=4,求PA的長(zhǎng)。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分10分)選修4—1:幾何證明選講

    如圖所示,已知PA是⊙O相切,A為切點(diǎn),PBC為割線,弦CD//AP,AD、BC相交于E點(diǎn),F(xiàn)為CE上一點(diǎn),且

   (1)求證:A、P、D、F四點(diǎn)共圓;

   (2)若AE·ED=24,DE=EB=4,求PA的長(zhǎng)。

查看答案和解析>>

同步練習(xí)冊(cè)答案