【題目】正四面體ABCD中,E、F分別為邊AB、BD的中點,則異面直線AF、CE所成角的余弦值為 .
科目:高中數學 來源: 題型:
【題目】已知向量 ,函數 ,若函數f(x)圖象的兩個相鄰的對稱軸間的距離為 .
(1)求函數f(x)的單調增區(qū)間;
(2)在△ABC中,角A,B,C所對的邊分別是a,b,c,若△ABC滿足f(A)=1,a=3,BC邊上的中線長為3,求△ABC的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)=e ﹣ ,其中e為自然對數的底數.
(1)設g(x)=(x+1)f′(x)(其中f′(x)為f(x)的導函數),判斷g(x)在(﹣1,+∞)上的單調性;
(2)若F(x)=ln(x+1)﹣af(x)+4無零點,試確定正數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司準備將1000萬元資金投入到市環(huán)保工程建設中,現(xiàn)有甲、乙兩個建設項目選擇,若投資甲項目一年后可獲得的利潤ξ1(萬元)的概率分布列如表所示:
ξ1 | 110 | 120 | 170 |
P | m | 0.4 | n |
且ξ1的期望E(ξ1)=120;若投資乙項目一年后可獲得的利潤ξ2(萬元)與該項目建設材料的成本有關,在生產的過程中,公司將根據成本情況決定是否在第二和第三季度進行產品的價格調整,兩次調整相互獨立且調整的概率分別為p(0<p<1)和1﹣p.若乙項目產品價格一年內調整次數X(次數)與ξ2的關系如表所示:
X | 0 | 1 | 2 |
ξ2 | 41.2 | 117.6 | 204.0 |
(Ⅰ)求m,n的值;
(Ⅱ)求ξ2的分布列;
(Ⅲ)若該公司投資乙項目一年后能獲得較多的利潤,求p的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】據某市地產數據研究院的數據顯示,2016年該市新建住宅銷售均價走勢如圖所示,為抑制房價過快上漲,政府從8月份采取宏觀調控措施,10月份開始房價得到很好的抑制.
(Ⅰ)地產數據研究院研究發(fā)現(xiàn),3月至7月的各月均價y(萬元/平方米)與月份x之間具有較強的線性相關關系,試建立y關于x的回歸方程(系數精確到0.01),政府若不調控,依次相關關系預測第12月份該市新建住宅銷售均價;
(Ⅱ)地產數據研究院在2016年的12個月份中,隨機抽取三個月份的數據作樣本分析,若關注所抽三個月份的所屬季度,記不同季度的個數為X,求X的分布列和數學期望.
參考數據: =25, =5.36, =0.64
回歸方程 中斜率和截距的最小二乘估計公式分別為:
= , .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= sinxcosx+cos2x
(I)求函數f(x)的最小正周期;
(II)若﹣ <α<0,f(α)= ,求sin2α的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在正方體ABCD﹣A1B1C1D1中,棱長為a,M、N分別為A1B和AC上的點,A1M=AN= ,則MN與平面BB1C1C的位置關系是( )
A.相交
B.平行
C.垂直
D.不能確定
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}中,a3=5,a5+a6=20,且2 ,2 ,2 成等比數列,數列{bn}滿足bn=an﹣(﹣1)nn.
(Ⅰ)求數列{bn}的通項公式;
(Ⅱ)設sn是數列{bn}前n項和,求sn .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com