【題目】已知中心在原點,焦點在軸上的橢圓的離心率為,且經過點

)求橢圓的方程;

)是否存在過點的直線相交于不同的兩點,滿足?

若存在,求出直線的方程;若不存在,請說明理由.

【答案】(1) ;(2) .

【解析】試題分析:(1)由題意布列的方程組,解之即可;(2)假設存在符合題意的直線

由題意直線存在斜率,設直線的方程為,消去 ,利用韋達定理表示

即可求出直線的方程.

試題解析:

)設橢圓的方程為

,

所以的方程為且經過點

,解得

故橢圓的方程為

假設存在符合題意的直線,

由題意直線存在斜率,設直線的方程為,

,消去

,解得

,則,

所以

整理得,解得

,所以

故存在直線滿足條件,其方程為,即

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)求證:;

(Ⅱ)若恒成立,求的最大值與的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列的公差d0,則下列四個命題:

①數(shù)列是遞增數(shù)列; ②數(shù)列是遞增數(shù)列;

③數(shù)列是遞增數(shù)列; ④數(shù)列是遞增數(shù)列.

其中正確命題的個數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,ABC是等邊三角形,ABAD,CBCD,點PAC的中點,記BPD、ABD的面積分別為,,二面角ABDC的大小為,

證明:(Ⅰ)平面ACD平面BDP

(Ⅱ)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校研究性學習小組對該校高三學生視力情況進行調查,在高三全體名學生中隨機抽取了名學生的體檢表,并得到如圖所示的頻率分布直方圖

(Ⅰ)若直方圖中后四組的頻數(shù)成等差數(shù)列,計算高三全體學生視力在以下的人數(shù),并估計這名學生視力的中位數(shù)(精確到);

(Ⅱ)學習小組發(fā)現(xiàn),學習成績突出的學生,近視的比較多,為了研究學生的視力與學習成績是否有關系,對高三全體成績名次在前名和后名的學生進行了調查,部分數(shù)據(jù)如表1,根據(jù)表1及臨界表2中的數(shù)據(jù),能否在犯錯誤的概率不超過的前提下認為視力與學習成績有關系?

年段名次

是否近視

近 視

不近視

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.84

5.024

6.635

7.879

10.83

(參考公式: ,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線的方程是: ,以坐標原點為極點, 軸正半軸為極軸建立極坐標系.

(1)求曲線的極坐標方程;

(2)設過原點的直線與曲線交于, 兩點,且,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018年元旦期間,某運動服裝專賣店舉辦了一次有獎促銷活動,消費每超過400元均可參加1次抽獎活動,抽獎方案有兩種,顧客只能選擇其中的一種.

方案一:顧客轉動十二等分且質地均勻的圓形轉盤(如圖),轉盤停止轉動時指針指向哪個扇形區(qū)域,則顧客可直接獲得該區(qū)域對應面額(單位:元)的現(xiàn)金優(yōu)惠,且允許顧客轉動3次.

方案二:顧客轉動十二等分且質地均勻的圓形轉盤(如圖〕,轉盤停止轉動時指針若指向陰影部分,則未中獎,若指向白色區(qū)域,則顧客可直接獲得40元現(xiàn)金,且允許顧客轉動3次.

(1)若兩位顧客均獲得1次抽獎機會,且都選擇抽獎方案一,試求這兩位顧客均獲得180元現(xiàn)金優(yōu)惠的概率;

(2)若某顧客恰好獲得1次抽獎機會.

①試分別計算他選擇兩種抽獎方案最終獲得現(xiàn)金獎勵的數(shù)學期望;

②從概率的角度比較①中該顧客選擇哪一種抽獎方案更合算?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在直角梯形中,,、分別是上的點,,且(如圖①).將四邊形沿折起,連接、(如圖②).在折起的過程中,則下列表述:

平面;

②四點、可能共面;

③若,則平面平面;

④平面與平面可能垂直.其中正確的是__________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線.

(1)求以右焦點為圓心,與雙曲線的漸近線相切的圓的方程;

(2)若經過點的直線與雙曲線的右支交于不同兩點、,求線段的中垂線軸上截距的取值范圍.

查看答案和解析>>

同步練習冊答案