【題目】已知圓的圓心坐標(biāo),直線被圓截得弦長(zhǎng)為。

(Ⅰ)求圓的方程;

(Ⅱ)從圓外一點(diǎn)向圓引切線,求切線方程。

【答案】(1);(2).

【解析】試題分析: 設(shè)圓的半徑為,根據(jù)圓心坐標(biāo)寫(xiě)出圓的標(biāo)準(zhǔn)方程,利用點(diǎn)到直線的距離公式求出圓心到直線的距離即為弦心距,然后根據(jù)垂徑定理得到其垂足為弦的中點(diǎn),由弦長(zhǎng)的一半,圓心距及半徑構(gòu)成的直角三角形,根據(jù)勾股定理列出關(guān)于的方程,求出方程的解即可得到的值,從而確定圓的方程;

當(dāng)切線方程的斜率不存在時(shí),顯然得到為圓的切線;

當(dāng)切線方程的斜率存在時(shí),設(shè)出切線的斜率為,由的坐標(biāo)和寫(xiě)出切線方程,利用點(diǎn)到直線的距離公式求出圓心到所設(shè)直線的距離,根據(jù)直線與圓相切,得到等于圓的半徑,列出關(guān)于的方程,求出方程的解即可得到的值,從而確定出切線的方程,綜上,得到所求圓的兩條切線方程。

解析:(Ⅰ)設(shè)圓的標(biāo)準(zhǔn)方程為:

圓心到直線的距離: ,

的標(biāo)準(zhǔn)方程:

(Ⅱ)①當(dāng)切線斜率不存在時(shí),設(shè)切線: ,此時(shí)滿(mǎn)足直線與圓相切。

②當(dāng)切線斜率存在時(shí),設(shè)切線: ,即

則圓心到直線的距離:

解得: ,即

則切線方程為:

綜上,切線方程為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)是橢圓 上的一點(diǎn),橢圓的右焦點(diǎn)為,斜率為的直線交橢圓、兩點(diǎn),且、、三點(diǎn)互不重合.

(1)求橢圓的方程;

(2)求證:直線, 的斜率之和為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方體中, 為棱上一動(dòng)點(diǎn), 為底面上一動(dòng)點(diǎn), 的中點(diǎn),若點(diǎn)都運(yùn)動(dòng)時(shí),點(diǎn)構(gòu)成的點(diǎn)集是一個(gè)空間幾何體,則這個(gè)幾何體是(

A. 棱柱 B. 棱臺(tái) C. 棱錐 D. 球的一部分

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓的圓心在直線上,且與直線相切于點(diǎn),

1)求圓方程;

2)是否存在過(guò)點(diǎn)的直線與圓交于兩點(diǎn),且的面積是為坐標(biāo)原點(diǎn)),若存在,求出直線的方程,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,建立平面直角坐標(biāo)系xOy,x軸在地平面上,y軸垂直于地平面,單位長(zhǎng)度為1千米,某炮位于坐標(biāo)原點(diǎn).已知炮彈發(fā)射后的軌跡在方程y=kx-表示的曲線上,其中k與發(fā)射方向有關(guān).炮的射程是指炮彈落地點(diǎn)的橫坐標(biāo).
(1)當(dāng)k=2時(shí),求炮的射程;
(2)求炮的最大射程;
(3)設(shè)在第一象限有一飛行物(忽略其大小),其飛行高度為3.2千米,試問(wèn)它的橫坐標(biāo)a不超過(guò)多少時(shí),炮彈可以其中它?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某家具廠有方木料,五合板,準(zhǔn)備加工成書(shū)桌和書(shū)櫥出售.已知生產(chǎn)每張書(shū)桌需要方木料、五合板;生產(chǎn)每個(gè)書(shū)櫥需要方木枓、五合板.出售一張書(shū)桌可獲利潤(rùn)元,出售一個(gè)書(shū)櫥可獲利潤(rùn)元,怎樣安排生產(chǎn)可使所得利潤(rùn)最大?最大利潤(rùn)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AB=1,AC=AA1= , ∠ABC=60°.
(1)證明:AB⊥A1C;
(2)求二面角A﹣A1C﹣B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)坐標(biāo)為.

(1)求拋物線的標(biāo)準(zhǔn)方程;

(2)過(guò)點(diǎn)作互相垂直的直線,與拋物線分別相交于兩點(diǎn)和兩點(diǎn),求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】運(yùn)貨卡車(chē)以每小時(shí)x千米的速度勻速行駛130千米,按交通法規(guī)限制50≤x≤100(單位:千米/時(shí)).假設(shè)汽油的價(jià)格是每升2元,而汽車(chē)每小時(shí)耗油升,司機(jī)的工資是每小時(shí)14元.

(1)求這次行車(chē)總費(fèi)用y關(guān)于x的表達(dá)式;

(2)當(dāng)x為何值時(shí),這次行車(chē)的總費(fèi)用最低,并求出最低費(fèi)用的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案