【題目】十九世紀(jì)末:法國學(xué)者貝特朗在研究幾何概型時提出了“貝特朗悖論”,即“在一個圓內(nèi)任意選一條弦,這條弦的弦長長于這個圓的內(nèi)接等邊三角形邊長的概率是多少?”貝特朗用“隨機半徑”“隨機端點”“隨機中點”三個合理的求解方法,但結(jié)果都不相同.該悖論的矛頭直擊概率概念本身,強烈地刺激了概率論基礎(chǔ)的嚴(yán)格化.已知“隨機端點”的方法如下:設(shè)為圓上一個定點,在圓周上隨機取一點,連接,所得弦長大于圓的內(nèi)接等邊三角形邊長的概率.則由“隨機端點”求法所求得的概率為( )
A.B.C.D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}為等差數(shù)列,前n項和為Sn(n∈N*),{bn}是首項為2的等比數(shù)列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4.
(1)求{an}和{bn}的通項公式;
(2)求數(shù)列{a2nbn}的前n項和(n∈N*).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過拋物線)的焦點F且斜率為的直線交拋物線C于M,N兩點,且.
(1)求p的值;
(2)拋物線C上一點,直線(其中)與拋物線C交于A,B兩個不同的點(A,B均與點Q不重合).設(shè)直線QA,QB的斜率分別為,.直線l是否過定點?如果是,請求出所有定點;如果不是,請說明理由;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列的公差不為0,其前項和為,,且,,成等比數(shù)列.
(1)求數(shù)列的通項公式及的最小值;
(2)若數(shù)列是等差數(shù)列,且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】記Sn為等比數(shù)列的前n項和,已知S2=2,S3=-6.
(1)求的通項公式;
(2)求Sn,并判斷Sn+1,Sn,Sn+2是否成等差數(shù)列。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)y=f(x)(x∈R)滿足f(1+x)=f(1-x)且x∈[-1,1]時,f(x)=1-x2,函數(shù)g(x)=則函數(shù)h(x)=f(x)-g(x)在區(qū)間[-5,5]內(nèi)的零點的個數(shù)為
A. 7 B. 8 C. 9 D. 10
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,,,E為AB的中點將沿直線DE折起到的位置,使平面平面BCDE.
(1)證明:平面PDE.
(2)設(shè)F為線段PC的中點,求四面體D-PEF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知⊙O的半徑是1,點C在直徑AB的延長線上,BC=1,點P是⊙O上半圓上的一個動點,以PC為邊作等邊三角形PCD,且點D與圓心分別在PC的兩側(cè).
(1)若∠POB=θ,試將四邊形OPDC的面積y表示為關(guān)于θ的函數(shù);
(2)求四邊形OPDC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某射擊運動員,每次擊中目標(biāo)的概率都是0.8.現(xiàn)采用隨機模擬的方法估計該運動員射擊4次至少擊中3次的概率:先由計算器算出0到9之間取整數(shù)值的隨機數(shù),指定0,1表示沒有擊中目標(biāo),2,3,4,5,6,7,8,9表示擊中目標(biāo);因為射擊4次,故以每4個隨機數(shù)為一組,代表射擊4次的結(jié)果.經(jīng)隨機模擬產(chǎn)生了如下20組隨機數(shù):
5727 0293 7140 9857 0347
4373 8636 9647 1417 4698
0371 6233 2616 8045 6011
3661 9597 7424 6710 4281
據(jù)此估計,該射擊運動員射擊4次至少擊中3次的概率為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com