【題目】對(duì)于曲線C所在平面上的定點(diǎn),若存在以點(diǎn)為頂點(diǎn)的角,使得對(duì)于曲線C上的任意兩個(gè)不同的點(diǎn)A,B恒成立,則稱(chēng)角為曲線C相對(duì)于點(diǎn)的“界角”,并稱(chēng)其中最小的“界角”為曲線C相對(duì)于點(diǎn)的“確界角”.曲線相對(duì)于坐標(biāo)原點(diǎn)的“確界角”的大小是 _________.
【答案】
【解析】
畫(huà)出函數(shù)的圖象,過(guò)點(diǎn)作出兩條直線與曲線無(wú)限接近,當(dāng)時(shí),曲線與直線無(wú)限接近,求出,當(dāng)時(shí),曲線可化為,圓心到直線的距離為1,求得,再由兩直線的夾角公式,即可求解.
由題意,畫(huà)出函數(shù)的圖象,過(guò)點(diǎn)作出兩條直線與曲線無(wú)限接近,
設(shè)它們的方程方程為,,
當(dāng)時(shí),曲線與直線無(wú)限接近,即為雙曲線的漸近線,可得;
當(dāng)時(shí),曲線可化為,圓心到直線的距離為,
解得,
由兩直線的夾角公式,可得,
所以曲線相對(duì)于點(diǎn)的“確界角”為.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面直角坐標(biāo)系中,直線(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直線的普通方程及曲線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)直角坐標(biāo)為,直線與曲線交于,兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平行四邊形中,,,點(diǎn)是的中點(diǎn),點(diǎn)是的中點(diǎn),分別沿.將和折起,使得平面平面(點(diǎn)在平面的同側(cè)),連接,如圖2所示.
(1)求證:;
(2)當(dāng),且平面平面時(shí),求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為半橢圓的左、右兩個(gè)頂點(diǎn),為上焦點(diǎn),將半橢圓和線段合在一起稱(chēng)為曲線
(1)求的外接圓圓心的坐標(biāo)
(2)過(guò)焦點(diǎn)的直線與曲線交于兩點(diǎn),若,求所有滿(mǎn)足條件的直線的方程
(3)對(duì)于一般的封閉曲線,曲線上任意兩點(diǎn)距離的最大值稱(chēng)為該曲線的“直徑”,如圓的“直徑”就是通常的直徑,橢圓的“直徑”就是長(zhǎng)軸的長(zhǎng),求該曲線的“直徑”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線C的頂點(diǎn)在原點(diǎn),對(duì)稱(chēng)軸是y軸,直線與拋物線交于不同的兩點(diǎn)、,線段中點(diǎn)的縱坐標(biāo)為2,且.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)設(shè)拋物線的焦點(diǎn)為,若直線經(jīng)過(guò)焦點(diǎn),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中有如下正確結(jié)論:為曲線(、為非零實(shí)數(shù),且不同時(shí)為負(fù))上一點(diǎn),則過(guò)點(diǎn)的切線方程為.
(1)已知為橢圓上一點(diǎn),為過(guò)點(diǎn)的橢圓的切線,若直線與直線的斜率分別為與,求證:為定值;
(2)過(guò)橢圓上一點(diǎn)引橢圓的切線,與軸交于點(diǎn).若為正三角形,求橢圓的方程;
(3)求與圓及(2)中的橢圓均相切的直線與坐標(biāo)軸圍成的三角形的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線-=1(a>0,b>0)的離心率為2,焦點(diǎn)到漸近線的距離等于,過(guò)右焦點(diǎn)F2的直線l交雙曲線于A,B兩點(diǎn),F1為左焦點(diǎn).
(1)求雙曲線的方程;
(2)若△F1AB的面積等于6,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)若對(duì)于任意的(為自然對(duì)數(shù)的底數(shù)),恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),橢圓的離心率為是橢圓E的右焦點(diǎn),直線AF的斜率為2,O為坐標(biāo)原點(diǎn).
(1)求E的方程;
(2)設(shè)過(guò)點(diǎn)且斜率為k的直線與橢圓E交于不同的兩M、N,且,求k的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com