.(12分)如圖,在三棱錐中,平面,、分別為棱、的中點,,
(1)求證:
(2)求直線與平面所成角正弦值.

(1)以點為原點,、、所在直線分別為、軸建立空間直角坐標系,則           
,
                                         
(2)       
設平面的法向量
   即    
,則平面的一個法向量
與平面所成角為,則
故直線與平面所成角正弦值為
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)如圖,在四棱錐中,底面是邊長為的正方形,側(cè)棱底面,分別為的中點.
(Ⅰ)求證:平面平面;
(Ⅱ)求與平面所成角的正弦值;
(Ⅲ)求到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

一個三棱柱的直觀圖和三視圖如圖所示(主視圖、俯視圖都是矩形,左視圖是直角三角形),設為線段上的點.
(1)求幾何體的體積;
(2)是否存在點E,使平面平面,若存在,求AE的長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,正方體的棱長是a,則點到平面的距離是
(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)如圖,正三棱柱的側(cè)棱長和底面邊長均為,的中點.

(Ⅰ)求證:平面;
(Ⅱ)求證:∥平面
(Ⅲ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

本題滿分14分)本題共有2個小題,第1小題滿分6分,第2小題滿分8分.
如圖,已知正方體的棱長為2,分別是的中點.
(1)求三棱錐的體積;
(2)求異面直線EF與AB所成角的大。ńY(jié)果用反三角函數(shù)值表示).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在正三棱柱ABC—A1B1C1中,AB=1,若二面角C—AB—C1的大小為60°,則點C到平面C1AB的距離為(     )
A.B.C.D.1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

.已知直線平面,直線平面,下面三個說法:
;②;③
則正確的說法為_____________(填正確說法的序號).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)已知三棱錐P-ABC中,PA⊥平面ABC,AB⊥AC,,N為AB上一點且滿足,M,S分別為PB,BC的中點
(1)證明:CM⊥SN;
(2)求SN與平面CMN所成角的大小;
(3)求三棱錐P-ABC外接球的體積V。

查看答案和解析>>

同步練習冊答案