【題目】已知函數(shù),若函數(shù)僅有個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為______.
【答案】
【解析】
令,得出,令,將問(wèn)題轉(zhuǎn)化為直線(xiàn)與函數(shù)的圖象有且僅有個(gè)交點(diǎn),然后對(duì)與的大小進(jìn)行分類(lèi)討論,利用數(shù)形結(jié)合思想得出關(guān)于實(shí)數(shù)的等式或不等式,即可求出實(shí)數(shù)的取值范圍.
令,則,得,令,
則問(wèn)題轉(zhuǎn)化為直線(xiàn)與函數(shù)的圖象有且僅有個(gè)交點(diǎn),
當(dāng)時(shí),,此時(shí)函數(shù)的圖象與直線(xiàn)只有個(gè)公共點(diǎn),符合題意;
當(dāng)時(shí),,若函數(shù)的圖象與直線(xiàn)只有個(gè)公共點(diǎn),
則,如下圖所示,
顯然成立,下面解不等式,即,
構(gòu)造函數(shù),,,令,得.
當(dāng)時(shí),,當(dāng)時(shí),.
所以,函數(shù)在處取得最大值,即,
所以,當(dāng)且時(shí),不等式恒成立,此時(shí),.
當(dāng)時(shí),,若函數(shù)的圖象與直線(xiàn)有個(gè)交點(diǎn),則有,
即,由上可知,(舍去).
綜上所述,.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列和滿(mǎn)足:,其中為實(shí)數(shù),為正整數(shù).
(1)對(duì)任意實(shí)數(shù),求證:不成等比數(shù)列;
(2)試判斷數(shù)列是否為等比數(shù)列,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】今天你低碳了嗎?近來(lái)國(guó)內(nèi)網(wǎng)站流行一種名為“碳排放計(jì)算器”的軟件,人們可以由此計(jì)算出自己每天的碳排放量,如家居用電的碳排放量(千克)=耗電度數(shù)×0.785,汽車(chē)的碳排放量(千克)=油耗公升數(shù)×0.785等,某班同學(xué)利用寒假在兩個(gè)小區(qū)逐戶(hù)進(jìn)行了一次生活習(xí)慣是否符合低碳觀念的調(diào)查.若生活習(xí)慣符合低碳觀念的稱(chēng)為“低碳族”,否則稱(chēng)為“非低碳族”,這二族人數(shù)占各自小區(qū)總?cè)藬?shù)的比例P數(shù)據(jù)如下:
A小區(qū) | 低碳族 | 非低碳族 | B小區(qū) | 低碳族 | 非低碳族 | |
比例P | 1/2 | 1/2 | 比例P | 4/5 | 1/5 |
(1)如果甲、乙來(lái)自A小區(qū),丙、丁來(lái)自B小區(qū),求這4人中恰好有兩人是低碳族的概率;
(2)A小區(qū)經(jīng)過(guò)大力宣傳,每周非低碳中有20%的人加入到低碳族的行列,如果兩周后隨機(jī)地從A小區(qū)中任選25個(gè)人,記表示25個(gè)人中的低碳族人數(shù),求E和
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x-lnx,g(x)=x2-ax.
(1)求函數(shù)f(x)在區(qū)間[t,t+1](t>0)上的最小值m(t);
(2)令h(x)=g(x)-f(x),A(x1,h(x1)),B(x2,h(x2))(x1≠x2)是函數(shù)h(x)圖像上任意兩點(diǎn),且滿(mǎn)足>1,求實(shí)數(shù)a的取值范圍;
(3)若x∈(0,1],使f(x)≥成立,求實(shí)數(shù)a的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著改革開(kāi)放的不斷深入,祖國(guó)不斷富強(qiáng),人民的生活水平逐步提高,為了進(jìn)一步改善民生,2019年1月1日起我國(guó)實(shí)施了個(gè)人所得稅的新政策,其政策的主要內(nèi)容包括:(1)個(gè)稅起征點(diǎn)為5000元;(2)每月應(yīng)納稅所得額(含稅)收入個(gè)稅起征點(diǎn)專(zhuān)項(xiàng)附加扣除;(3)專(zhuān)項(xiàng)附加扣除包括①贍養(yǎng)老人費(fèi)用②子女教育費(fèi)用③繼續(xù)教育費(fèi)用④大病醫(yī)療費(fèi)用等.其中前兩項(xiàng)的扣除標(biāo)準(zhǔn)為:①贍養(yǎng)老人費(fèi)用:每月扣除2000元②子女教育費(fèi)用:每個(gè)子女每月扣除1000元.新個(gè)稅政策的稅率表部分內(nèi)容如下:
級(jí)數(shù) | 一級(jí) | 二級(jí) | 三級(jí) | 四級(jí) | |
每月應(yīng)納稅所得額(含稅) | 不超過(guò)3000元的部分 | 超過(guò)3000元至12000元的部分 | 超過(guò)12000元至25000元的部分 | 超過(guò)25000元至35000元的部分 | |
稅率 | 3 | 10 | 20 | 25 |
(1)現(xiàn)有李某月收入29600元,膝下有一名子女,需要贍養(yǎng)老人,除此之外,無(wú)其它專(zhuān)項(xiàng)附加扣除.請(qǐng)問(wèn)李某月應(yīng)繳納的個(gè)稅金額為多少?
(2)為研究月薪為20000元的群體的納稅情況,現(xiàn)收集了某城市500名的公司白領(lǐng)的相關(guān)資料,通過(guò)整理資料可知,有一個(gè)孩子的有400人,沒(méi)有孩子的有100人,有一個(gè)孩子的人中有300人需要贍養(yǎng)老人,沒(méi)有孩子的人中有50人需要贍養(yǎng)老人,并且他們均不符合其它專(zhuān)項(xiàng)附加扣除(受統(tǒng)計(jì)的500人中,任何兩人均不在一個(gè)家庭).若他們的月收入均為20000元,依據(jù)樣本估計(jì)總體的思想,試估計(jì)在新個(gè)稅政策下這類(lèi)人群繳納個(gè)稅金額的分布列與期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,五面體中,,平面平面,平面平面.,,點(diǎn)P是線(xiàn)段上靠近A的三等分點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)求直線(xiàn)與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解高三男生的體能達(dá)標(biāo)情況,抽調(diào)了120名男生進(jìn)行立定跳遠(yuǎn)測(cè)試,根據(jù)統(tǒng)計(jì)數(shù)據(jù)得到如下的頻率分布直方圖.若立定跳遠(yuǎn)成績(jī)落在區(qū)間的左側(cè),則認(rèn)為該學(xué)生屬“體能不達(dá)標(biāo)的學(xué)生,其中分別為樣本平均數(shù)和樣本標(biāo)準(zhǔn)差,計(jì)算可得(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).
(1)若該校高三某男生的跳遠(yuǎn)距離為,試判斷該男生是否屬于“體能不達(dá)標(biāo)”的學(xué)生?
(2)該校利用分層抽樣的方法從樣本區(qū)間中共抽出5人,再?gòu)闹羞x出兩人進(jìn)行某體能訓(xùn)練,求選出的兩人中恰有一人跳遠(yuǎn)距離在的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知南北回歸線(xiàn)的緯度為,設(shè)地球表面某地正午太陽(yáng)高度角為,為此時(shí)太陽(yáng)直射緯度,為該地的緯度值,那么這三個(gè)量之間的關(guān)系是.當(dāng)?shù)叵陌肽?/span>取正值,冬半年取負(fù)值,如果在北半球某地(緯度為)的一幢高為的樓房北面蓋一新樓,要使新樓一層正午的太陽(yáng)全年不被前面的樓房遮擋,兩樓的距離應(yīng)不小于______(結(jié)果用含有和的式子表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線(xiàn)的兩個(gè)焦點(diǎn)為、,P為該雙曲線(xiàn)上一點(diǎn),滿(mǎn)足,P到坐標(biāo)原點(diǎn)O的距離為d,且,則________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com