【題目】如圖,在四棱錐中,平面平面,,是等邊三角形.已知,,.

(1)設上的一點,證明:平面平面

(2)當點位于線段什么位置時,平面?

(3)求四棱錐的體積.

【答案】(1)見解析;(2)點位于線段靠近點的三等分點處時;(3)24.

【解析】

試題分析:(1)證明面面垂直,一般利用面面垂直判定定理,即從線面垂直出發(fā)給予證明,而線面垂直的證明,往往需要多次利用線面垂直判定與性質定理:本題先根據(jù)平幾知識得到線線垂直,再結合面面垂直條件,轉化為線面垂直(2)分析思路先根據(jù)線面平行性質定理,轉化為線線平行,再根據(jù)線線平行轉化為對應線段成比例,得到M點位置.最后證明逆推:即由從線線平行證線面平行(3)求三棱錐體積,關鍵在于確定高,即明確線面垂直,再根據(jù)體積公式計算,本題可根據(jù)面面垂直得線面垂直,即高線.

試題解析:(1)證明:在中,

,,,.

.

又平面平面,

平面平面平面,

平面.

平面,平面平面.

(2)當點位于線段靠近點的三等分點處時,

平面.

證明如下:連接,交于點,連接.

四邊形是梯形.

.

平面,平面,平面.

(3)過點,

平面平面平面.

為四棱錐的高,

是邊長為4的等邊三角形,.

中,斜邊上的高為,此即為梯形的高.

梯形的面積.

四棱錐的體積.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】方程(x2-4)2+(y2-4)2=0表示的圖形是

A.兩個點 B.四個點

C.兩條直線 D.四條直線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,在邊長為1的等邊三角形中,分別是邊上的點,,的中點,交于點,將沿折起,得到如圖2所示的三棱錐,其中.

1 證明://平面;

2 證明:平面;

3 時,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個幾何體,它的下面是一個圓柱,上面是一個圓錐,并且圓錐的底面與圓柱的上底面重合,圓柱的底面直徑為3 cm,高為4 cm,圓錐的高為3 cm,畫出此幾何體的直觀圖.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】ABC,已知cos Acos Bsin Asin B,ABC(  )

A. 銳角三角形 B. 直角三角形

C. 鈍角三角形 D. 等腰三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校學生研究性學習小組發(fā)現(xiàn),學生上課的注意力指標隨著聽課時間的變化而變化.老師講課開始時學生的興趣激增,接下來學生的興趣將保持較理想的狀態(tài)一段時間,隨后學生的注意力開始分散.該小組發(fā)現(xiàn)注意力指標與上課時刻第 分鐘末的關系如下設上課開始時,: .若上課后第分鐘末時的注意力指標為.

1的值;

2上課后第分鐘末和下課前 分鐘末比較,哪個時刻注意力更集中?

3在一節(jié)課中,學生的注意力指標至少達到的時間能保持多長?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知.

(1)討論的單調性;

(2)時,證明:對于任意的成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)y=loga(x1)+1(a>0且a≠1)的圖象恒過定點

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓(a>b>0)的左、右焦點為F1、F2,點A在橢圓上,且與x軸垂直.

(1)求橢圓的方程;

(2)過A作直線與橢圓交于另外一點B,求AOB面積的最大值.

查看答案和解析>>

同步練習冊答案