【題目】ABC,已知cos Acos Bsin Asin B,ABC(  )

A. 銳角三角形 B. 直角三角形

C. 鈍角三角形 D. 等腰三角形

【答案】C

【解析】cos Acos B>sin Asin B,得cos A·cos B-sin Asin B=cos (AB)>0,所以AB<90°,所以C>90°,C為鈍角.故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是( )

圓臺(tái)可以由任意一個(gè)梯形繞其一邊旋轉(zhuǎn)形成;

用任意一個(gè)與底面平行的平面截圓臺(tái),截面是圓面;

以半圓的直徑為軸旋轉(zhuǎn)半周形成的旋轉(zhuǎn)體叫做球;

圓柱的任意兩條母線平行,圓錐的任意兩條母線相交,圓臺(tái)的任意兩條母線延長(zhǎng)后相交.

A. ①② B. ②③ C. ①③ D. ②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于定義在區(qū)間上的函數(shù),若存在閉區(qū)間和常數(shù),使得對(duì)任意,都有,且對(duì)任意,當(dāng)時(shí),恒成立,則稱函數(shù)為區(qū)間上的平底型函數(shù).

1判斷函數(shù)是否為上的平底型函數(shù)?

2若函數(shù)是區(qū)間上的平底型函數(shù),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司生產(chǎn)一種電子儀器的固定成本為20000元,每生產(chǎn)一臺(tái)儀器需增加投入100元,已知總收益滿足函數(shù):,其中是儀器的月產(chǎn)量.

1 將利潤(rùn)表示為月產(chǎn)量的函數(shù)

2 當(dāng)月產(chǎn)量為何值時(shí),公司所獲利潤(rùn)最大?最大利潤(rùn)為多少元? 利潤(rùn)=總收益-總成本

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某種水箱用的“浮球”,是由兩個(gè)半球和一個(gè)圓柱筒組成.已知半球的直徑是6 cm,圓柱筒高為2 cm.

1這種“浮球”的體積是多少cm3結(jié)果精確到0.1?

2要在2 500個(gè)這樣的“浮球”表面涂一層膠,如果每平方米需要涂膠100克,那么共需膠多少克?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,平面平面,,是等邊三角形.已知,,.

(1)設(shè)上的一點(diǎn),證明:平面平面

(2)當(dāng)點(diǎn)位于線段什么位置時(shí),平面

(3)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為,,以橢圓短軸為直徑的圓經(jīng)過(guò)點(diǎn).

(1)求橢圓的方程;

(2)過(guò)點(diǎn)的直線與橢圓相交于兩點(diǎn),設(shè)直線的斜率分別為,問(wèn)是否為定值?并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=log2(3x+3x)是( )
A.奇函數(shù)
B.偶函數(shù)
C.既是奇函數(shù)又是偶函數(shù)
D.非奇非偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在空間四邊形ABCD中,平面ABD⊥平面BCD,且DA⊥平面ABC,則△ABC是( )
A.直角三角形
B.等腰三角形
C.等邊三角形
D.等腰直角三角形

查看答案和解析>>

同步練習(xí)冊(cè)答案