【題目】將5名報(bào)名參加運(yùn)動(dòng)會(huì)的同學(xué)分別安排到跳繩、接力,投籃三項(xiàng)比賽中(假設(shè)這些比賽都不設(shè)人數(shù)上限),每人只參加一項(xiàng),則共有種不同的方案;若每項(xiàng)比賽至少要安排一人時(shí),則共有種不同的方案,其中的值為( )

A. 543 B. 425 C. 393 D. 275

【答案】C

【解析】分析根據(jù)題意,易得5名同學(xué)中每人有3種報(bào)名方法,由分步計(jì)數(shù)原理計(jì)算可得答案.第二種先分組再排列,問(wèn)題得以解決.

詳解:5名同學(xué)報(bào)名參加跳繩、接力,投籃三項(xiàng)比賽,每人限報(bào)一項(xiàng),每人有3種報(bào)名方法,根據(jù)分步計(jì)數(shù)原理,x==243種,

當(dāng)每項(xiàng)比賽至少要安排一人時(shí),先分組有(+)=25種,再排列有=6種,所以y=25×6=150種,

所以x+y= 393

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為,( 為參數(shù)),為曲線上的動(dòng)點(diǎn),動(dòng)點(diǎn)滿足),點(diǎn)的軌跡為曲線.

(1)求曲線的方程,并說(shuō)明是什么曲線;

(2)在以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸的極坐標(biāo)系中, 點(diǎn)的極坐標(biāo)為,射線的異于極點(diǎn)的交點(diǎn)為,已知面積的最大值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn),點(diǎn)為曲線上任意一點(diǎn)且滿足

1)求曲線的方程;

2)設(shè)曲線 軸交于兩點(diǎn),點(diǎn)是曲線上異于的任意一點(diǎn),直線分別交直線于點(diǎn),試問(wèn)軸上是否存在一個(gè)定點(diǎn),使得?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)是定義為R的偶函數(shù),且對(duì)任意的,都有且當(dāng)時(shí), ,若在區(qū)間內(nèi)關(guān)于的方程恰好有3個(gè)不同的實(shí)數(shù)根,則的取值范圍是 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某生產(chǎn)廠家生產(chǎn)一種產(chǎn)品的固定成本為4萬(wàn)元,并且每生產(chǎn)1百臺(tái)產(chǎn)品需增加投入0.8萬(wàn)元.已知銷售收入(萬(wàn)元)滿足(其中是該產(chǎn)品的月產(chǎn)量,單位:百臺(tái)),假定生產(chǎn)的產(chǎn)品都能賣掉,請(qǐng)完成下列問(wèn)題:

(1)將利潤(rùn)表示為月產(chǎn)量的函數(shù);

(2)當(dāng)月產(chǎn)量為何值時(shí),公司所獲利潤(rùn)最大?最大利潤(rùn)為多少萬(wàn)元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某教育主管部門到一所中學(xué)檢查學(xué)生的體質(zhì)健康情況.從全體學(xué)生中,隨機(jī)抽取12名進(jìn)行體質(zhì)健康測(cè)試,測(cè)試成績(jī)(百分制)以莖葉圖形式表示如圖所示.根據(jù)學(xué)生體質(zhì)健康標(biāo)準(zhǔn),成績(jī)不低于76的為優(yōu)良.

(1)寫出這組數(shù)據(jù)的眾數(shù)和中位數(shù);
(2)將頻率視為概率.根據(jù)樣本估計(jì)總體的思想,在該校學(xué)生中任選3人進(jìn)行體質(zhì)健康測(cè)試,求至少有1人成績(jī)是“優(yōu)良”的概率;
(3)從抽取的12人中隨機(jī)選取3人,記ξ表示成績(jī)“優(yōu)良”的學(xué)生人數(shù),求ξ的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了研究黏蟲(chóng)孵化的平均溫度(單位:)與孵化天數(shù)之間的關(guān)系,某課外興趣小組通過(guò)試驗(yàn)得到以下6組數(shù)據(jù):

他們分別用兩種模型①,②分別進(jìn)行擬合,得到相應(yīng)的回歸方程并進(jìn)行殘差分析,得到如圖所示的殘差圖:

經(jīng)過(guò)計(jì)算,,.

(1)根據(jù)殘差圖,比較模型①、②的擬合效果,應(yīng)選擇哪個(gè)模型?(給出判斷即可,不必說(shuō)明理由)

(2)殘差絕對(duì)值大于1的數(shù)據(jù)被認(rèn)為是異常數(shù)據(jù),需要剔除,剔除后應(yīng)用最小二乘法建立關(guān)于的線性回歸方程.(精確到).

參考公式:線性回歸方程中,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給定一個(gè)數(shù)列{an},在這個(gè)數(shù)列里,任取m(m≥3,m∈N*)項(xiàng),并且不改變它們?cè)跀?shù)列{an}中的先后次序,得到的數(shù)列{an}的一個(gè)m階子數(shù)列.
已知數(shù)列{an}的通項(xiàng)公式為an= (n∈N* , a為常數(shù)),等差數(shù)列a2 , a3 , a6是數(shù)列{an}的一個(gè)3子階數(shù)列.
(1)求a的值;
(2)等差數(shù)列b1 , b2 , …,bm是{an}的一個(gè)m(m≥3,m∈N*)階子數(shù)列,且b1= (k為常數(shù),k∈N* , k≥2),求證:m≤k+1
(3)等比數(shù)列c1 , c2 , …,cm是{an}的一個(gè)m(m≥3,m∈N*)階子數(shù)列,求證:c1+c1+…+cm≤2﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線為參數(shù)),為參數(shù)).

(1)化的參數(shù)方程為普通方程,并說(shuō)明它們分別表示什么曲線;

(2)若上的點(diǎn)對(duì)應(yīng)的參數(shù)為上的動(dòng)點(diǎn),求的中點(diǎn)到直線為參數(shù))距離的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案