等比數(shù)列{an}同時滿足下列三個條件:①a1+a6=33;②a2a5=32;③三個數(shù)2a2,a32,3a4+4依次成等差數(shù)列,求數(shù)列{an}的通項公式及前n項和Sn
【答案】分析:由①②求出a1,a6  的值,求出an=2n-1或an=26-n.再通過③驗證,確定通項公式,再根據(jù)等比數(shù)列前n項和公式計算出Sn
解答:解:由等比數(shù)列性質,a1•a6 =a2a5=32,又a1+a6=33.∴a1,a6是方程x2-33x+32=0的兩根,解得①,此時q=2,通項公式為an=2n-1,三個數(shù)2a2,a32,3a4+4依次為:4,16,28,成等差數(shù)列,符合題意.
或②,此時q=,通項公式為an=32×=26-n,三個數(shù)2a2,a32,3a4+4依次32,64,16,不成等差數(shù)列.
∴數(shù)列{an}的通項公式an=2n-1;
∴Sn==2n-1.
點評:本題考查等比數(shù)列的性質、通項公式、前n項和Sn.在解題中,應用性質能有效的減少運算量.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

等比數(shù)列{an}同時滿足下列三個條件:①a1+a6=33;②a2a5=32;③三個數(shù)2a2,a32,3a4+4依次成等差數(shù)列,求數(shù)列{an}的通項公式及前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等比數(shù)列{an}同時滿足下列條件:①a1+a6=33,②a3a4=32,③三個數(shù)4a2,2a3,a4依次成等差數(shù)列.

(1)求數(shù)列{an}的通項公式;

(2)設Sn是數(shù)列{an}的前n項和,證明<1;

(3)記bn=,求數(shù)列{bn}的前n項和Tn.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

等比數(shù)列{an}同時滿足下列三個條件:①a1+a6=33;②a2a5=32;③三個數(shù)2a2,a32,3a4+4依次成等差數(shù)列,求數(shù)列{an}的通項公式及前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等比數(shù)列{an}同時滿足下列三個條件:

(1)a1+a6=11;

(2)a3·a4=;

(3)三個數(shù)a2,a32,a4+依次成等差數(shù)列.

    試求數(shù)列{an}的通項公式.

   

查看答案和解析>>

同步練習冊答案