(10分)如圖,已知兩條直線l1:x-3y+12=0,l2:3x+y-4=0,過(guò)定點(diǎn)P(-1,2)作一條直線l,分別與l1,l2交于M、N兩點(diǎn),若P點(diǎn)恰好是MN的中點(diǎn),求直線l的方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
定義:設(shè)分別為曲線和上的點(diǎn),把兩點(diǎn)距離的最小值稱(chēng)為曲線到的距離.
(1)求曲線到直線的距離;
(2)若曲線到直線的距離為,求實(shí)數(shù)的值;
(3)求圓到曲線的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題12分)在平面直角坐標(biāo)系O中,直線與拋物線=2相交于A、B兩點(diǎn)。
(1)求證:命題“如果直線過(guò)點(diǎn)T(3,0),那么=3”是真命題;
(2)寫(xiě)出(1)中命題的逆命題,判斷它是真命題還是假命題,并說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知的頂點(diǎn),邊上的中線所在的直線方程為,邊上的高所在直線的方程為。
(1)求的頂點(diǎn)、的坐標(biāo);
(2)若圓經(jīng)過(guò)不同的三點(diǎn)、、,且斜率為的直線與圓相切于點(diǎn),求圓的方程;
(3)問(wèn)圓是否存在斜率為的直線,使被圓截得的弦為,以為直徑的圓經(jīng)過(guò)原點(diǎn).若存在,寫(xiě)出直線的方程;若不存在,說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)
直線與軸,軸分別相交于A、B兩點(diǎn),以AB為邊做等邊,若平面內(nèi)有一點(diǎn)使得與的面積相等,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題12分)已知直線l與兩坐標(biāo)軸圍成的三角形的面積為3, 且過(guò)定點(diǎn)A(-3,4). 求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)已知函數(shù)的圖象與軸分別相交于點(diǎn)兩點(diǎn),向量,,又函數(shù),且的值域是,。
(1)求, 及的值;(2)當(dāng)滿(mǎn)足時(shí),求函數(shù)的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知直線:與直線:互相平行,經(jīng)過(guò)點(diǎn)的直線與,垂直,且被,截得的線段長(zhǎng)為,試求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題12分)
求滿(mǎn)足下列條件的直線方程:
(1)過(guò)點(diǎn)(2,3),斜率是直線斜率的一半;
(2)過(guò)點(diǎn)(1,0),且過(guò)直線
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com