函數(shù)y=
log2(2x2-x)
的定義域為
 
考點:函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)f(x)的解析式,列出使解析式有意義的不等式組,從而求出f(x)的定義域.
解答: 解:要使函數(shù)有意義,x需滿足:
2x2-x>0
log2(2x2-x)≥0
,
可得 x≤-
1
2
,或x≥1,
故答案為:{ {x|x≤-
1
2
,或x≥1},
點評:本題考查函數(shù)定義域的求解,屬基礎(chǔ)題,要求:開偶次方根被開方數(shù)要大于等于零;對數(shù)的真數(shù)大于零.注意定義域的表示形式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,將一矩形花壇ABCD擴(kuò)建成一個更大的矩形花壇AMPN,要求B點在AM上,D點在AN上,且對角線MN過C點,已知AB=3米,AD=2米.
(Ⅰ)要使花壇AMPN的面積大于32平方米,求AN長的取值范圍;
(Ⅱ)若AN∈[3,4)(單位:米),則當(dāng)AM,AN的長度分別是多少時,花壇AMPN的面積最大?并求出最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
AB
=(2,x-1),
CD
=(1,-y),其中xy>0,且
AB
CD
,則
8x+y
xy
的最小值為( 。
A、34B、25C、27D、16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

閱讀如圖所示的程序框圖,運行相應(yīng)的程序,輸出s的值為( 。
A、62B、126
C、254D、510

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an},{bn}的前n項和為Sn,Tn,若對于任意的自然數(shù)n,都有
Sn
Tn
=
2n-3
4n-1
,則
a3+a15
2(b3+b9)
+
a3
b2+b10
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項和為Sn,且滿足S15>0,S16<0,則當(dāng)Sn最大時,n=(  )
A、6B、7C、8D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式x2-2x-3<0成立的一個必要不充分條件是( 。
A、-1<x<3
B、0<x<3
C、-2<x<3
D、-2<x<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=kx-
k
x
-2lnx
(1)若f′(-2)=0求過點(2,f(2))處的切線方程;
(2)若f(x) 在其定義域內(nèi)為單調(diào)增函數(shù),求k取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b,c均為正實數(shù)
(1)若a+b+c=1,求a2+b2+c2的最小值.
(2)求證:
1
a
+
1
b
+
1
c
2
a+b
+
2
b+c
+
2
c+a

查看答案和解析>>

同步練習(xí)冊答案