【題目】已知函數(shù)f(x)=alnx+ ,曲線f(x)在點(diǎn)(1,f(1))處的切線平行于x軸.
(1)求f(x)的最小值;
(2)比較f(x)與 的大。
(3)證明:x>0時(shí),xexlnx+ex>x3 .
【答案】
(1)解:f'(x)= ,根據(jù)題意知f'(1)=0,即a=1,∴ ,
∴f'(x)= ,∴當(dāng)0<x<1時(shí),f'(x)<0,f(x)單調(diào)遞減;
當(dāng)x>1時(shí),f'(x)>0,f(x)單調(diào)遞增;
∴f(x)min=f(1)=1
(2)解:令 = = ,
,
∴g(x)在(0,+∞)上單調(diào)遞減
又∵g(1)=0∴當(dāng)0<x<1時(shí),g(x)>g(1)=0, ;
當(dāng)x>1時(shí),g(x)<g(1)=0, ;
當(dāng)x=1時(shí),g(x)=0,
(3)證明:要證xexlnx+ex>x3,即證:
令 ,即證∴f(x)>h(x), = ,
∴當(dāng)0<x<2時(shí),h'(x)>0,h(x)單調(diào)遞增;
當(dāng)x>2時(shí),h'(x)<0,h(x)單調(diào)遞減;∴h(x)max=h(2)= ,
又由(1)知f(x)min=1,∴f(x)≥1,∴f(x)>h(x),得證
【解析】(1)求出函數(shù)的導(dǎo)數(shù),利用曲線f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,求出a,然后判斷函數(shù)的單調(diào)性,求解函數(shù)的最小值即可.(2)令 ,化簡(jiǎn)通過函數(shù)的導(dǎo)數(shù),判斷導(dǎo)函數(shù)的符號(hào),然后通過x 的范圍,判斷兩個(gè)數(shù)的大小.(3)要證xexlnx+ex>x3 , 即證: ,令 ,利用函數(shù)的導(dǎo)數(shù),判斷函數(shù)的單調(diào)性求出函數(shù)的最小值,即可證明結(jié)果.
【考點(diǎn)精析】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的最大(小)值與導(dǎo)數(shù)的相關(guān)知識(shí)點(diǎn),需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐P﹣ABC中,D,E分別是BC,AB的中點(diǎn),PA⊥平面ABC,∠BAC=90°,AB≠AC,AC>AD,PC與DE所成的角為α,PD與平面ABC所成的角為β,二面角P﹣BC﹣A的平面角為γ,則α,β,γ的大小關(guān)系是( )
A.α<β<γ
B.α<γ<β
C.β<α<γ
D.γ<β<α
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A,B,C是橢圓M:上的三點(diǎn),其中點(diǎn)A是橢圓的右頂點(diǎn),BC過橢圓M的中心,且滿足AC⊥BC,BC=2AC。
(1)求橢圓的離心率;
(2)若y軸被△ABC的外接圓所截得弦長(zhǎng)為9,求橢圓方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分14分)
已知拋物線的焦點(diǎn)為, 為上異于原點(diǎn)的任意一點(diǎn),過點(diǎn)的直線交于另一點(diǎn),交軸的正半軸于點(diǎn),且有.當(dāng)點(diǎn)的橫坐標(biāo)為時(shí), 為正三角形.
(Ⅰ)求的方程;
(Ⅱ)若直線,且和有且只有一個(gè)公共點(diǎn),
(ⅰ)證明直線過定點(diǎn),并求出定點(diǎn)坐標(biāo);
(ⅱ)的面積是否存在最小值?若存在,請(qǐng)求出最小值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某次測(cè)驗(yàn)中,有6位同學(xué)的平均成績(jī)?yōu)?5分.用xn表示編號(hào)為n(n=1,2,…,6)的同學(xué)所得成績(jī),且前5位同學(xué)同學(xué)的成績(jī)?nèi)绫恚?
n | 1 | 2 | 3 | 4 | 5 |
x0 | 70 | 76 | 72 | 70 | 72 |
(1)求第6位同學(xué)的成績(jī)x6及這6位同學(xué)成績(jī)的標(biāo)準(zhǔn)差s;
(2)若從前5位同學(xué)中,隨機(jī)地選2位同學(xué),求恰有1位同學(xué)成績(jī)?cè)趨^(qū)間[68,75)中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)若滿足,且在定義域內(nèi)恒成立,求實(shí)數(shù)的取值范圍;
(Ⅱ)若函數(shù)在定義域上是單調(diào)函數(shù),求實(shí)數(shù)的最小值;
(Ⅲ)當(dāng)時(shí),試比較與的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市教育部門擬從18名高中數(shù)學(xué)教師中選拔2人參加省教師技能大賽.為縮短比賽時(shí)間,將這18名教師隨機(jī)分成, 兩組,其選拔賽成績(jī)的莖葉圖如圖所示.該教育部門先將成績(jī)不低于85分的教師初選出來(lái)進(jìn)行培訓(xùn)后,再?gòu)闹羞x拔2人參加省教師技能大賽.
(Ⅰ)若僅從初選選手中隨機(jī)抽選2人參加省賽,并記抽選的2人中來(lái)自組的人數(shù)為,試求的分布列和期望值;
(Ⅱ)在(Ⅰ)的條件下,若參加省賽的2人是同性的概率等于,求初選出來(lái)參加培訓(xùn)的男教師和女教師的人數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量 =(3,﹣4), =(6,﹣3), =(5﹣x,﹣3﹣y), =(4,1)
(1)若四邊形ABCD是平行四邊形,求x,y的值;
(2)若△ABC為等腰直角三角形,且∠B為直角,求x,y的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列前5項(xiàng)和為50, ,數(shù)列的前項(xiàng)和為, , .
(Ⅰ)求數(shù)列, 的通項(xiàng)公式;
(Ⅱ)若數(shù)列滿足, ,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com