在添加劑的搭配使用中,為了找到最佳的搭配方案,需要對各種不同的搭配方式作比較.在試制某種洗滌劑時,需要選用兩種不同的添加劑.現(xiàn)有芳香度分別為1,2,3,4,5,6的六種添加劑可供選用.根據(jù)試驗設(shè)計原理,通常首先要隨機選取兩種不同的添加劑進行搭配試驗.用X表示所選用的兩種不同的添加劑的芳香度之和.求所選用的兩種不同的添加劑的芳香度之和等于6的概率.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

為了解某市的交通狀況,現(xiàn)對其6條道路進行評估,得分分別為:5,6,7,8,9,10.規(guī)定評估的平均得分與全市的總體交通狀況等級如下表:

評估的平均得分



全市的總體交通狀況等級
不合格
合格
優(yōu)秀
(1)求本次評估的平均得分,并參照上表估計該市的總體交通狀況等級;
(2)用簡單隨機抽樣方法從這條道路中抽取條,它們的得分組成一個樣本,求該樣本的平均數(shù)與總體的平均數(shù)之差的絕對值不超過的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)甲、乙、丙三人每次射擊命中目標的概率分別為0.7、0.6和0.5.三人各向目標射擊一次,求至少有一人命中目標的概率及恰有兩人命中目標的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)連續(xù)擲兩次骰子得到的點數(shù)分別為m、n,令平面向量a=(m,n),b=(1,-3).
(1) 求使得事件“ab”發(fā)生的概率;
(2) 求使得事件“|a|≤|b|”發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

生活富裕了,農(nóng)民也健身啦,一天,一農(nóng)民夫婦帶著小孩共3人在新農(nóng)村健身房玩?zhèn)髑蛴螒,持球者將球等可能的傳給其他2人,若球首先從父親傳出,經(jīng)過4次傳球.
(1)求球恰好回到父親手中的概率;
(2)求小孩獲球(獲得他人傳來的球)的次數(shù)為2次的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

甲、乙、丙三個車床加工的零件分別為350個,700個,1050個,現(xiàn)用分層抽樣的方法隨機抽取6個零件進行檢驗.
(1)從抽取的6個零件中任意取出2個,已知這兩個零件都不是甲車床加工的,求其中至少有一個是乙車床加工的零件;
(2)從抽取的6個零件中任意取出3個,記其中是乙車床加工的件數(shù)為X,求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某工廠在試驗階段大量生產(chǎn)一種零件,這種零件有、兩項技術(shù)指標需要檢測,設(shè)各項技術(shù)指標達標與否互不影響.若有且僅有一項技術(shù)指標達標的概率為,至少一項技術(shù)指標達標的概率為.按質(zhì)量檢驗規(guī)定:兩項技術(shù)指標都達標的零件為合格品.
(1)求一個零件經(jīng)過檢測為合格品的概率是多少?
(2)任意依次抽取該種零件4個,設(shè)表示其中合格品的個數(shù),求的分布列及數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

甲、乙等五名大運會志愿者被隨機分到A、B、CD四個不同的崗位服務(wù),每個崗位至少有一名志愿者.
(1)求甲、乙兩人同時參加A崗位服務(wù)的概率;
(2)求甲、乙兩人不在同一崗位服務(wù)的概率;
(3)設(shè)隨機變量ξ為這五名志愿者中參加A崗位服務(wù)的人數(shù),求ξ的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

甲、乙兩人進行投籃比賽,兩人各投3球,誰投進的球數(shù)多誰獲勝,已知每次投籃甲投進的概率為,乙投進的概率為,求:
(1)甲投進2球且乙投進1球的概率;
(2)在甲第一次投籃未投進的條件下,甲最終獲勝的概率.

查看答案和解析>>

同步練習冊答案