5.已知直線a1x+b1y+5=0和a2x+b2y+5=0的交點(diǎn)是P(2,1),則過(guò)兩點(diǎn)Q1(a1,b1)和Q2(a2,b2)的直線方程是( 。
A.x-2y+5=0B.2x-y+5=0C.x+2y+5=0D.2x+y+5=0

分析 把點(diǎn)(2,1)的坐標(biāo)代入兩直線a1x+b1y+5=0和a2x+b2y+5=0,求出過(guò)兩點(diǎn)A(a1,b1)、B(a2,b2)的斜率,再求過(guò)兩點(diǎn)A(a1,b1)、B(a2,b2)的直線方程.

解答 解:∵兩直線直線a1x+b1y+5=0和a2x+b2y+5=0的交點(diǎn)是P(2,1),
∴2a1+b1+5=0,2a2+b2+5=0,
∴2(a1-a2)+(b1-b2)=0,
若a1=a2,則b1=b2,兩直線平行,故a1≠a2,
即$\frac{_{1}-_{2}}{{a}_{1}-{a}_{2}}$=2.
∴所求直線方程為y-b1=2(x-a1).
∴2x+y-(2a1+b1)=0,
即2x+y+5=0.
故選:D.

點(diǎn)評(píng) 本題考查了兩直線的交點(diǎn)坐標(biāo),考查了直線方程的求法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.如果函數(shù)f(x)=x2+2(a-1)x+2的單調(diào)減區(qū)間是(-∞,4],則a=( 。
A.3B.-3C.5D.-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)$f(x)=\frac{x}{1+x}$.
(1)求f(2)與$f(\frac{1}{2})$,f(3)與$f(\frac{1}{3})$的值.
(2)求f(1)+f(2)+f(3)+…+f(2 012)+$f({\frac{1}{2}})+f({\frac{1}{3}})+…+f({\frac{1}{2012}})$.
(3)由(1)中求得的結(jié)果,你能發(fā)現(xiàn)f(x)與$f(\frac{1}{x})$有什么關(guān)系?并證明你的發(fā)現(xiàn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=|2x-1|.
(1)求不等式f(x)<2;
(2)若函數(shù)g(x)=f(x)+f(x-1)的最小值為a,且m+n=a(m>0,n>0),求$\frac{2}{m}+\frac{1}{n}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.等差數(shù)列{an}中,a3+a5=16,則a4=( 。
A.8B.6C.4D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知下列命題:
①在△ABC中,若sin2A=sin2B,則△ABC一定是等腰三角形;
②已知α是銳角,且$cos(α+\frac{π}{4})=\frac{3}{5}$,則$sinα=\frac{{\sqrt{2}}}{10}$;
③將函數(shù)$y=sin(2x+\frac{π}{3})$圖象上的所有點(diǎn)向左平移$\frac{π}{12}$個(gè)單位,則得到的函數(shù)圖象關(guān)于y對(duì)稱;
④若$sinx=-\frac{4}{5}$,$x∈(-\frac{π}{2},0)$,則$tan2x=\frac{24}{7}$.
其中所有正確命題的序號(hào)是②③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.若4a=3,則log23+log83=$\frac{8a}{3}$.(用a表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.偶函數(shù)定義在R上,當(dāng)x>0時(shí),f(x)<xf′(x),且 f(1)=0,則不等式xf(x)>0的解集為(-1,0)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在平面直角坐標(biāo)系xOy中,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{{\sqrt{3}}}{2}$,且點(diǎn)($\sqrt{3}$,$\frac{1}{2}$)在橢圓C上.
(1)求橢圓C的方程;
(2)設(shè)橢圓E:$\frac{{x}^{2}}{4{a}^{2}}$+$\frac{{y}^{2}}{4^{2}}$=1,P為橢圓C上任意一點(diǎn),過(guò)點(diǎn)P的直線y=kx+m交橢圓E于A,B兩點(diǎn),射線PO交橢圓E于點(diǎn)Q.
(i)求證$\frac{|OQ|}{|OP|}$=2;
(ii)求△ABQ面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案