16、設函數(shù)y=f(x)是定義在R上的奇函數(shù),且滿足f(x-2)=-f(x)對一切x∈R都成立,又當x∈[-1,1]時,f(x)=x3,則下列四個命題:①函數(shù)y=f(x)是以4為周期的周期函數(shù);②當x∈[1,3]時,f(x)=(2-x)3; ③函數(shù)y=f(x)的圖象關(guān)于x=1對稱;④函數(shù)y=f(x)的圖象關(guān)于(2,0)對稱.其中正確的命題是
①②③④
分析:根據(jù)題意,結(jié)合各個選項,逐一檢驗答案,將條件等價轉(zhuǎn)化變形,綜合考慮函數(shù)的周期性、對稱性、解析式,分析可得答案.
解答:解:∵函數(shù)y=f(x)是定義在R上的奇函數(shù),∴f(-x)=-f(x),
∵f(x-2)=-f(x)對一切x∈R都成立,∴f(x-4)=f(x),∴函數(shù)y=f(x)是以4為周期的周期函數(shù),
故①正確.
當x∈[1,3]時,x-2∈∈[-1,1],f(x-2)=(x-2)3=-f(x),
∴f(x)=(2-x)3,故②正確.
∵f(x-2)=-f(x),∴f(1+x)=f(1-x),∴函數(shù)y=f(x)的圖象關(guān)于x=1對稱,
故③正確.
∵當x∈[1,3]時,f(x)=(2-x)3,∴f(2)=0,
∵f(x-2)=-f(x),∴f(-x-2)=-f(-x)=f(x)=-f(x-2),
∴f(x+2)=-f(x-2),∴函數(shù)y=f(x)的圖象關(guān)于(2,0)對稱.
故正確的命題有  ①②③④,
故答案選  ①②③④.
點評:本題考查函數(shù)的奇偶性和周期性,以及運用函數(shù)的奇偶性和周期性求函數(shù)解析式及函數(shù)值、函數(shù)圖象的對稱性.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)y=f (x)是定義域為R的奇函數(shù),且滿足f (x-2)=-f (x)對一切x∈R恒成立,當-1≤x≤1時,f (x)=x3,則下列四個命題:
①f(x)是以4為周期的周期函數(shù).
②f(x)在[1,3]上的解析式為f (x)=(2-x)3
③f(x)在(
3
2
,f(
3
2
))
處的切線方程為3x+4y-5=0.
④f(x)的圖象的對稱軸中,有x=±1,其中正確的命題是( 。
A、①②③B、②③④
C、①③④D、①②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)y=f(x)是定義在(0,+∞)上的函數(shù),并且滿足下面三個條件:
①對正數(shù)x、y都有f(xy)=f(x)+f(y);
②當x>1時,f(x)<0;
③f(3)=-1
(I)求f(1)和f(
19
)
的值;
(II)如果不等式f(x)+f(2-x)<2成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)y=f(x)是定義在R上以1為周期的函數(shù),若g(x)=f(x)-2x在區(qū)間[2,3]上的值域為[-2,6],則函數(shù)g(x)在[-12,12]上的值域為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)y=f(x)是定義在正實數(shù)上的增函數(shù),且f(xy)=f(x)+f(y),
(1)求證:f(
xy
)=f(x)-f(y);
(2)若f(3)=1,f(a)>f(a-1)+2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)y=f(x)是定義在R上的奇函數(shù),且f(x-2)=-f(x)對一切x∈R都成立,又當x∈[-1,1]時,f(x)=x3,則下列五個命題:
①函數(shù)y=f(x)是以4為周期的周期函數(shù);
②當x∈[1,3]時,f(x)=( x-2)3;
③直線x=±1是函數(shù)y=f(x)圖象的對稱軸;
④點(2,0)是函數(shù)y=f(x)圖象的對稱中心;
⑤函數(shù)y=f(x)在點(
3
2
,f(
3
2
))處的切線方程為3x-y-5=0.
其中正確的是
①③
①③
.(寫出所有正確命題的序號)

查看答案和解析>>

同步練習冊答案