18.已知函數(shù)f(x)=sin(ωx+φ)-$\sqrt{3}$cos(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)圖象的相鄰兩條對(duì)稱軸為直線x=0與x=$\frac{π}{2}$,則f(x)的最小正周期為π,φ=-$\frac{π}{6}$.

分析 由對(duì)稱性易得函數(shù)的周期,由對(duì)稱性可得φ值.

解答 解:化簡(jiǎn)可得f(x)=sin(ωx+φ)-$\sqrt{3}$cos(ωx+φ)=2sin(ωx+φ-$\frac{π}{3}$),
∵直線x=0和x=$\frac{π}{2}$是函數(shù)f(x)圖象的兩條相鄰的對(duì)稱軸,
∴T=$\frac{2π}{ω}$=2($\frac{π}{2}$-0)=π,解得ω=2,
∴f(x)=2sin(2x+φ-$\frac{π}{3}$),
由對(duì)稱性可知f(0)=±2,即φ-$\frac{π}{3}$=kπ+$\frac{π}{2}$,
解得φ=kπ+$\frac{5π}{6}$,由|φ|<$\frac{π}{2}$可知當(dāng)k=-1時(shí),φ=-$\frac{π}{6}$,
故答案是:π,-$\frac{π}{6}$.

點(diǎn)評(píng) 本題考查兩角和與差的三角函數(shù),涉及三角函數(shù)的對(duì)稱性,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)f(x)=ax2-bx+6lnx+15,其中a∈R,曲線y=f(x)在x=1和x=6處的切線都與直線$y=-\frac{1}{2}x+3$垂直.
(1)確定a,b的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間與極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知等比數(shù)列{an}滿足:a1=$\frac{1}{2}$,a1,a2,a3-$\frac{1}{8}$成等差數(shù)列,公比q∈(0,1)
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=2nan,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知數(shù)列{an}的前n項(xiàng)和Sn=$\frac{3}{2}$n2-$\frac{n}{2}$,bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$,Tn為{bn}的前n項(xiàng)和,若對(duì)任意的n∈N,不等式λTn<n+12(-1)n恒成立,則實(shí)數(shù)λ的取值范圍為(-∞,-44).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)a∈R,“a>1”是“方程x2+2ax+y2+1=0的曲線是圓”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)$\overrightarrow a$=(1,2),$\overrightarrow b$=(1,1),$\overrightarrow c$=$\overrightarrow a$+k$\overrightarrow b$.若$\overrightarrow b$⊥$\overrightarrow c$,則實(shí)數(shù)k的值等于$-\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.不共線的非零向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow$|=|-2$\overrightarrow{a}$|,則向量2$\overrightarrow{a}$+$\overrightarrow$與2$\overrightarrow{a}$-$\overrightarrow$的夾角為( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}4\;|{\;{{log}_2}x\;}|\;\;\;\;\;0<x<2\\ \frac{1}{2}{x^2}-5x+12\;\;\;\;\;x≥2\end{array}$,若存在實(shí)數(shù)a,b,c,d滿足f(a)=f(b)=f(c)=f(d),若d>c>b>a>0,則abc(d-4)的取值范圍是( 。
A.(8,9)B.(8,9]C.(12,32)D.[12,32)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在棱長(zhǎng)為2的正方體中,
(1)求異面直線BD與B1C所成的角
(2)求證:平面ACB1⊥平面B1D1DB.

查看答案和解析>>

同步練習(xí)冊(cè)答案