【題目】某公司有四輛汽車,其中車的車牌尾號為0,兩輛車的車牌尾號為6,車的車牌尾號為5,已知在非限行日,每輛車都有可能出車或不出車.已知兩輛汽車每天出車的概率為兩輛汽車每天出車的概率為,且四輛汽車是否出車是相互獨(dú)立的.

該公司所在地區(qū)汽車限行規(guī)定如下

(1)求該公司在星期四至少有2輛汽車出車的概率;

(2)設(shè)表示該公司在星期一和星期二兩天出車的車輛數(shù)之和,的分布列和數(shù)學(xué)期望.

【答案】(1).(2)見解析.

【解析】試題分析:(1)先求出其對立事件該公司在星期四最多有一輛汽車出車)的概率,則所求概率 .(2的可能值為0,1,2,3,4,分別求出即可得的分布列和數(shù)學(xué)期望.

試題解析:

(1)記該公司在星期四至少有兩輛汽車出車為事件

該公司在星期四最多有一輛汽車出車

.

.

該公司在星期四至少有兩輛汽車出行的概率為.

(2)由題意,的可能值為0,1,2,3,4

;

;

;

.

.

的數(shù)學(xué)期望為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是:( )

①設(shè)函數(shù)可導(dǎo),則;

②過曲線外一定點(diǎn)做該曲線的切線有且只有一條;

③已知做勻加速運(yùn)動的物體的運(yùn)動方程是米,則該物體在時刻秒的瞬時速度是秒;

④一物體以速度(米/秒)做直線運(yùn)動,則它在秒時間段內(nèi)的位移為米;

⑤已知可導(dǎo)函數(shù),對于任意時,是函數(shù)上單調(diào)遞增的充要條件.

A. ①③B. ③④C. ②③⑤D. ③⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了了解學(xué)生對電子競技的興趣,從該校高二年級的學(xué)生中隨機(jī)抽取了人進(jìn)行檢查,已知這人中有名男生對電子競技有興趣,而對電子競技沒興趣的學(xué)生人數(shù)與電子競技競技有興趣的女生人數(shù)一樣多,且女生中有的人對電子競技有興趣.

在被抽取的女生中與名高二班的學(xué)生,其中有名女生對電子產(chǎn)品競技有興趣,先從這名學(xué)生中隨機(jī)抽取人,求其中至少有人對電子競技有興趣的概率;

完成下面的列聯(lián)表,并判斷是否有的把握認(rèn)為“電子競技的興趣與性別有關(guān)”.

有興趣

沒興趣

合計(jì)

男生

女生

合計(jì)

參考數(shù)據(jù):

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某家報(bào)刊銷售點(diǎn)從報(bào)社買進(jìn)報(bào)紙的價(jià)格是每份0.35元,賣出的價(jià)格是每份0.50元,賣不掉的報(bào)紙還可以每份0.08元的價(jià)格退回報(bào)社.在一個月(30天)里,有20天每天可以賣出400份,其余10天每天只能賣出250.設(shè)每天從報(bào)社買進(jìn)的報(bào)紙的數(shù)量相同,則應(yīng)該每天從報(bào)社買進(jìn)多少份,才能使每月所獲得的利潤最大?并計(jì)算該銷售點(diǎn)一個月最多可賺得多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

(1)求過點(diǎn)和函數(shù)的圖像相切的直線方程;

(2)若對任意,恒成立,的取值范圍;

(3)若存在唯一的整數(shù),使得,的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,現(xiàn)有如下兩種圖象變換方案:

(方案1):將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼囊话,縱坐標(biāo)不變,再將所得圖象向左平移個單位長度;

(方案2):將函數(shù)的圖象向左平移個單位長度,再將所得圖象上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼囊话,縱坐標(biāo)不變.

請你從中選擇一種方案,確定在此方案下所得函數(shù)的解析式,并解決如下問題:

1)用“五點(diǎn)作圖法”畫出函數(shù)的閉區(qū)間上的圖象(列表并畫圖);

2)請你在答題紙相應(yīng)位置逐一寫出函數(shù)的①周期性②奇偶性③單調(diào)遞增區(qū)間④單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱ABC—A1B1C1中,∠ACB=90°,AC=AA1=1,, AB1A1B相交于點(diǎn)D,MB1C1的中點(diǎn) .

1)求證:CD⊥平面BDM;

2)求平面B1BD與平面CBD所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三的某次數(shù)學(xué)測試中,對其中100名學(xué)生的成績進(jìn)行分析,按成績分組,得到的頻率分布表如下:

組號

分組

頻數(shù)

頻率

1

[90,100

15

2

[100110

0.35

3

[110,120

20

0.20

4

[120130

20

0.20

5

[130,140

10

0.10

合計(jì)

100

1.00

1)求出頻率分布表中①、②位置相應(yīng)的數(shù)據(jù);

2)為了選拔出最優(yōu)秀的學(xué)生參加即將舉行的數(shù)學(xué)競賽,學(xué)校決定在成績較高的第3、45組中分層抽樣取5名學(xué)生,則第45組每組各抽取多少名學(xué)生?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過坐標(biāo)原點(diǎn)的直線l與圓Cx2+y28x+120相交于不同的兩點(diǎn)A,B

1)求線段AB的中點(diǎn)P的軌跡M的方程.

2)是否存在實(shí)數(shù)k,使得直線l1ykx5)與曲線M有且僅有一個交點(diǎn)?若存在,求出k的取值范圍;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案