精英家教網 > 高中數學 > 題目詳情

一臺機器使用的時間較長,但還可以使用,它按不同的轉速生產出來的某機械零件有一些會有缺點,每小時生產有缺點零件的多少,隨機器的運轉的速度而變化,下表為抽樣試驗的結果:

 
轉速x(轉/秒)
16
14
12
8
每小時生產有缺點的零件數y(件)
11
9
8
5
 
畫出散點圖,并通過散點圖確定變量y對x是否線性相關;
(2)如果y對x有線性相關關系,求回歸直線方程;
(3)若實際生產中,允許每小時的產品中有缺點的零件最多為10個,那么機器的運轉速度應控制在什么范圍內?(精確到0.0001)

(1) 根據題意,描出點可得到散點圖:

有線性相關關系
(2) y=0.7286x-0.8571
(3)14.9013轉/秒內

解析試題分析:解(1)根據題意,描出點可得到散點圖:

根據圖象可知點基本都分布在一條直線附近,故具有線性相關關系--6分
(2)由于根據數據可知,則可知b=0.7286,a=-0.8571故可知y=0.7286x-0.8571  10分
(3)由實際生產中,允許每小時的產品中有缺點的零件最多為10個,則可知,即 解得x14.9013
所以機器的運轉速度應控制14.9013轉/秒內   13分
考點:散點圖
點評:主要是考查了散點圖以及線性回歸方程的運用,屬于基礎題。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

為了解今年某校高三畢業(yè)班準備報考飛行員學生體重情況,將所得的數據整理后,畫出了頻率分布直方圖(如圖).已知圖中從左到右的前3個小組的頻率之比為,其中第二小組的頻數為12.

(1)求該校報考飛行員的總人數;
(2)以這所學校的樣本來估計全省的總體數據,若從全省報考飛行員的同學中(人數很多)任選三人,設表示體重超過60公斤的學生人數,求的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

經銷商經銷某種農產品,在一個銷售季度內,每售出1t該產品獲利潤500元,未售出的產品,每1t虧損300元.根據歷史資料,得到銷售季度內市場需求量的頻率分布直圖,如右圖所示.經銷商為下一個銷售季度購進了130t該農產品.以(單位:t,100≤≤150)表示下一個銷售季度內的市場需求量,T(單位:元)表示下一個銷售季度內經銷該農產品的利潤.

(Ⅰ)將T表示為的函數;
(Ⅱ)根據直方圖估計利潤T不少于57000元的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

屆亞運會于 日至日在中國廣州進行,為了做好接待工作,組委會招募了 名男志愿者和名女志愿者,調查發(fā)現,男、女志愿者中分別有人和人喜愛運動,其余不喜愛.
根據以上數據完成以下列聯表:

 
喜愛運動
不喜愛運動
總計

10
 
16

6
 
14
總計
 
 
30
(2)能否在犯錯誤的概率不超過的前提下認為性別與喜愛運動有關?
(3)如果從喜歡運動的女志愿者中(其中恰有 人會外語),抽取名負責翻譯工作,則抽出的志愿者中人都能勝任翻譯工作的概率是多少?
附:K2=
P(K2≥k)
0.100
0.050
0.025
0.010
0.001
k
2.706
3.841
5.024
6.635
10.828

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某市統(tǒng)計局就某地居民的月收入調查了10 000人,并根據所得數據畫出樣本的
頻率分布直方圖(每個分組包括左端點,不包括右端點,如第一組表示收入在[1 000,
1 500)).

(1)求居民收入在[3 000,3 500)的頻率;
(2)根據頻率分布直方圖算出樣本數據的中位數;
(3)為了分析居民的收入與年齡、職業(yè)等方面的關系,必須按月收入再從這10 000人中按分層抽樣方法抽出100人作進一步分析,則月收入在[2 500,3 000)的這段應抽取多少人?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

一般來說,一個人腳掌越長,他的身高就越高,F對10名成年人的腳掌長與身高進行測量,得到數據(單位均為)作為樣本如下表所示.

(1)在上表數據中,以“腳掌長”為橫坐標,“身高”為縱坐標,作出散點圖后,發(fā)現散點在一條直線附近,試求“身高”與“腳掌長”之間的線性回歸方程;
(2)若某人的腳掌長為,試估計此人的身高;
(3)在樣本中,從身高180cm以上的4人中隨機抽取2人作進一步的分析,求所抽取的2人中至少有1人身高在190cm以上的概率.
(參考數據:,,,)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在一段時間內,某種商品價格(萬元)和需求量之間的一組數據為:

價 格
1.4
1.6
1.8
2
2.2
需求量
12
10
7
5
3
(1)進行相關性檢驗;
(2)如果之間具有線性相關關系,求出回歸直線方程,并預測當價格定為1.9萬元,需求量大約是多少?(精確到0.01
參考公式及數據:,
相關性檢驗的臨界值表:
n-2
1
2
3
4
5
6
7
8
9
10
小概率0.01
1.000
0.990
0.959
0.917
0.874
0.834
0.798
0.765
0.735
0.708

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

有甲、乙兩個班級進行數學考試,按照大于或等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計成績后,得到如下聯表:

 
優(yōu)秀
非優(yōu)秀
合計
甲班
30
 
 
乙班
 
50
 
合計
 
 
200
已知全部200人中隨機抽取1人為優(yōu)秀的概率為
(1)請完成上面聯表;
(2)根據列聯表的數據,能否有的把握認為“成績與班級有關系”
(3)從全部200人中有放回抽取3次,每次抽取一人,記被抽取的3人中優(yōu)秀的人數為,若每次抽取得結果是相互獨立的,求的分布列,期望和方差
參考公式與參考數據如下:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

為了讓學生了解環(huán)保知識,增強環(huán)保意識,某中學舉行了一次“環(huán)保知識競賽”,共有900名學生參加了這次競賽. 為了解本次競賽成績情況,從中抽取了部分學生的成績(得分均為整數,滿分為100分)進行統(tǒng)計. 請你根據尚未完成并有局部污損的頻率分布表和頻數分布直方圖,解答下列問題:
(1)填充頻率分布表的空格(將答案直接填在表格內);

分組
頻數
頻率
50.5~60.5
4
0.08
60.5~70.5
 
0.16
70.5~80.5
10
 
80.5~90.5
16
0.32
90.5~100.5
 
 
合計
50
 
(2)補全頻數條形圖;

(3)若成績在75.5~85.5分的學生為二等獎,問獲得二等獎的學生約為多少人。

查看答案和解析>>

同步練習冊答案