如圖所示,在四棱錐中,底面為矩
形,⊥平面,,上的點,若⊥平面

(1)求證:的中點;
(2)求二面角的大小.
(1)由PD⊥平面MAB,平面MAB,則PDMA,同時PA=AD,進而得到證明。
(2)120°

試題分析:解:(1)由PD⊥平面MAB平面MAB,則PDMA   2分
又PA=AD,則△APM≌△AMD,因而PM=DM,即MPD的中點;   5分
(2)以A原點,以所在直線分別為x軸、y軸、z軸建立空間直角坐標系,
A(0,0,0),B(1,0,0),C(1,2,0),D(0,2,0),P(0,0,2),M(0,1,1),
由(1)知=(0,-1,1)為平面MAB的法向量,            7分
設平面MBC的法向量=(x,yz),=(1,1,-1),= (0,2,0),=0, =0,即,令x=z=1,則=(1,0,1),   10分
,                11分
而二面角A—BM—C為鈍角,因而其大小為120°.       12分
點評:解決的關鍵是利用空間向量結合向量的數(shù)量積來表示角的大小,屬于基礎題。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知斜三棱柱,側面與底面垂直,∠,且,.

(1)試判斷與平面是否垂直,并說明理由;
(2)求側面與底面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,為圓的直徑,點、在圓上,,矩形所在的平面與圓所在的平面互相垂直.已知,

(Ⅰ)求證:平面平面;
(Ⅱ)求直線與平面所成角的大小;
(Ⅲ)當的長為何值時,平面與平面所成的銳二面角的大小為?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

一個正方體的六個面上分別標有A,B,C,D,E,F,下圖是正方體的兩種不同放置,則與D面相對的面上的字母是________

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

用平行于棱錐底面的平面去截棱錐,則截面與底面之間的部分叫棱臺。
如圖,在四棱臺中,下底是邊長為的正方形,上底是邊長為1的正方形,側棱⊥平面,.

(Ⅰ)求證:平面
(Ⅱ)求平面與平面夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在正方體中,是棱的中點.

(Ⅰ)證明:平面;
(Ⅱ)證明: .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,底面△為正三角形的直三棱柱中,,,的中點,點在平面內(nèi),

(Ⅰ)求證:;  
(Ⅱ)求證:∥平面
(Ⅲ)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

為兩條直線,為兩個平面,則下列結論成立的是(  )
A.若,則B.若,則
C.若,D.若

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,四面體的六條邊均相等,分別是的中點,則下列四個結論中不成立的是 (    )      
                                                            
A.平面平面B.平面
C.//平面D.平面平面

查看答案和解析>>

同步練習冊答案