如圖,底面△為正三角形的直三棱柱中,,,的中點(diǎn),點(diǎn)在平面內(nèi),

(Ⅰ)求證:;  
(Ⅱ)求證:∥平面;
(Ⅲ)求二面角的大小.
(Ⅰ)利用線面垂直證明線線垂直.(Ⅱ)線線平行證明線面平行.(Ⅲ)

試題分析:(Ⅰ)取的中點(diǎn),連結(jié),
,
,,
平面
,∴
,∴
(Ⅱ)連結(jié),在中,,,為中點(diǎn),
,
,∴四邊形為平行四邊形.∴
,∴
又∵,∴平面
(Ⅲ)二面角的大小為
點(diǎn)評(píng):高考中常考查空間中平行關(guān)系與垂直關(guān)系的證明以及幾何體體積的計(jì)算,這是高考的重點(diǎn)內(nèi)容.證明的關(guān)鍵是熟練掌握并靈活運(yùn)用相關(guān)的判定定理與性質(zhì)定理
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在棱長為2的正方體中,點(diǎn)E,F分別是棱AB,BC的中點(diǎn),則點(diǎn)到平面的距離等于( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

四面體SABC,E,F,G分別是棱SC,AB,SB的中點(diǎn),若異面直線SABC所成的角等于45º,則∠EGF等于(    )
A.90ºB.60º或120ºC.45ºD.45º或135º

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在四棱錐中,底面為矩
形,⊥平面,,上的點(diǎn),若⊥平面

(1)求證:的中點(diǎn);
(2)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(理科)(本小題滿分12分)如圖分別是正三棱臺(tái)ABC-A1B1C1的直觀圖和正視圖,O,O1分別是上下底面的中心,E是BC中點(diǎn).

(1)求正三棱臺(tái)ABC-A1B1C1的體積;
(2)求平面EA1B1與平面A1B1C1的夾角的余弦;
(3)若P是棱A1C1上一點(diǎn),求CP+PB1的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,是均以為斜邊的等腰直角三角形,分別為,的中點(diǎn),的中點(diǎn),且平面.

(1)證明:平面;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,點(diǎn)P在正方形ABCD所在平面外,PA⊥平面ABCD,PA=AB,則PB與AC所成的角是(  )
A.90°  B.60° 
C.45°  D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

直棱柱ABCD—A1B1C1D1中,底面ABCD是直角梯形,∠BAD=∠ADC=90°,AB=2AD=2CD=2.
(1)求證:平面ACB1⊥平面BB1C1C;
(2)在A1B1上是否存在一點(diǎn)P,使得DP與平面ACB1平行?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在正三棱柱中,若AB=2,則點(diǎn)A到平面的距離為(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案