【題目】如圖是某學校高三年級的三個班在一學期內(nèi)的六次數(shù)學測試的平均成績y關(guān)于測試序號x的函數(shù)圖象,為了容易看出一個班級的成績變化,將離散的點用虛線連接,根據(jù)圖象,給出下列結(jié)論:

①一班成績始終高于年級平均水平,整體成績比較好;

②二班成績不夠穩(wěn)定,波動程度較大;

③三班成績雖然多次低于年級平均水平,但在穩(wěn)步提升.

其中錯誤的結(jié)論的個數(shù)為( )

A.0B.1C.2D.3

【答案】A

【解析】

看圖分析,①比較一班與年級平均成績的大。虎诳炊嗟某煽儾▌樱虎劭慈嗟钠骄煽,以及增減性,即可得到答案.

由圖可知,一班成績始終高于年級平均水平,整體成績比較好,故①正確;

二班的成績有時高于年級整體成績,有時低于年級整體成績,特別是第六次成績遠低于

年級整體成績,可知二班成績不穩(wěn)定,波動程度較大,故②正確;

三班成績雖然多數(shù)時間低于年級平均水平,只有第六次高于年級整體成績,

但在穩(wěn)步提升,故③正確.

∴錯誤結(jié)論的個數(shù)為0.

故選:A.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】基本再生數(shù)R0與世代間隔T是新冠肺炎的流行病學基本參數(shù).基本再生數(shù)指一個感染者傳染的平均人數(shù),世代間隔指相鄰兩代間傳染所需的平均時間.在新冠肺炎疫情初始階段,可以用指數(shù)模型:描述累計感染病例數(shù)I(t)隨時間t(單位:)的變化規(guī)律,指數(shù)增長率rR0,T近似滿足R0 =1+rT.有學者基于已有數(shù)據(jù)估計出R0=3.28T=6.據(jù)此,在新冠肺炎疫情初始階段,累計感染病例數(shù)增加1倍需要的時間約為(ln2≈0.69)

A.1.2B.1.8

C.2.5D.3.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知橢圓的左、右焦點分別為F1,F2,點A在橢圓E上且在第一象限內(nèi),AF2F1F2,直線AF1與橢圓E相交于另一點B

1)求AF1F2的周長;

2)在x軸上任取一點P,直線AP與橢圓E的右準線相交于點Q,求的最小值;

3)設點M在橢圓E上,記OABMAB的面積分別為S1,S2,若S2=3S1,求點M的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若曲線處切線的斜率為,判斷函數(shù)的單調(diào)性;

2)若函數(shù)有兩個零點,,證明,并指出a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是定義在的偶函數(shù),且.時,,若方程300個不同的實數(shù)根,則實數(shù)m的取值范圍為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在棱長為1的正方體中,為棱上的動點(點不與點,重合),過點作平面分別與棱,交于,兩點,若,則下列說法正確的是(

A.

B.存在點,使得∥平面

C.存在點,使得點到平面的距離為

D.用過,,三點的平面去截正方體,得到的截面一定是梯形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校課外興趣小組利用假期到植物園開展社會實踐活動,研究某種植物生長情況與溫度的關(guān)系.現(xiàn)收集了該種植物月生長量ycm)與月平均氣溫x(℃)的8組數(shù)據(jù),并制成如圖所示的散點圖.

根據(jù)收集到的數(shù)據(jù),計算得到如下值:

18

12.325

224.04

235.96

1)求出y關(guān)于x的線性回歸方程(最終結(jié)果的系數(shù)精確到0.01),并求溫度為28℃時月生長量y的預報值;

2)根據(jù)y關(guān)于x的回歸方程,得到殘差圖如圖所示,分析該回歸方程的擬合效果.

附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為滿足人民對美好生活的向往,環(huán)保部門要求相關(guān)企業(yè)加強污水治理,排放未達標的企業(yè)要限期整改,設企業(yè)的污水排放量W與時間t的關(guān)系為,用的大小評價在這段時間內(nèi)企業(yè)污水治理能力的強弱,已知整改期內(nèi),甲、乙兩企業(yè)的污水排放量與時間的關(guān)系如下圖所示.


給出下列四個結(jié)論:

①在這段時間內(nèi),甲企業(yè)的污水治理能力比乙企業(yè)強;

②在時刻,甲企業(yè)的污水治理能力比乙企業(yè)強;

③在時刻,甲、乙兩企業(yè)的污水排放都已達標;

④甲企業(yè)在這三段時間中,在的污水治理能力最強.

其中所有正確結(jié)論的序號是____________________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,三棱錐中,面.

1)若,求證:;

2)若,,,且互余,求直線和面所成角的正弦值.

查看答案和解析>>

同步練習冊答案