【題目】如圖1在正方形中,,的中點(diǎn),把沿折疊,使為等邊三角形,得到如圖2所示的幾何體.

(Ⅰ)證明:;

(Ⅱ)求二面角的余弦值.

【答案】(Ⅰ)證明見解析;(Ⅱ).

【解析】

I)取的中點(diǎn),連接,證得,證得平面,進(jìn)而得到

(Ⅱ)由(Ⅰ)證得,分別以,的方向?yàn)?/span>軸,軸的正方向,過點(diǎn)垂直于平面的直線為軸建立如圖所示的空間直角坐標(biāo)系,分別求得平面和平面的一個法向量,結(jié)合向量的夾角公式,即可求解.

I)依題意,底面是直角梯形,,,

的中點(diǎn),連接,,

,,所以四邊形為矩形,所以,

因?yàn)?/span>為等邊三角形,所以,

因?yàn)?/span>,所以平面

因?yàn)?/span>平面,所以

(Ⅱ)由(Ⅰ)知,平面,所以平面平面

點(diǎn)到平面的距離即點(diǎn)的距離,

因?yàn)?/span>,,,所以平面,所以,

中,可得的距離為,

分別以,的方向?yàn)?/span>軸,軸的正方向,過點(diǎn)垂直于平面的直線為軸建立如圖所示的空間直角坐標(biāo)系

,,

所以,,

設(shè)平面的一個法向量為,

所以,則,

而平面的一個法向量為

由圖可知,二面角為鈍角,所以所求的余弦值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】阿波羅尼斯(約公元前年)證明過這樣一個命題:平面內(nèi)到兩定點(diǎn)距離之比為常數(shù)的點(diǎn)的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.若平面內(nèi)兩定點(diǎn)、間的距離為,動點(diǎn)滿足,則的最小值為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位在2019年重陽節(jié)組織50名退休職工(男、女各25名)旅游,退休職工可以選擇到甲、乙兩個景點(diǎn)其中一個去旅游.他們最終選擇的景點(diǎn)的結(jié)果如下表:

男性

女性

甲景點(diǎn)

20

10

乙景點(diǎn)

5

15

1)據(jù)此資料分析,是否有的把握認(rèn)為選擇哪個景點(diǎn)與性別有關(guān)?

2)按照游覽不同景點(diǎn)用分層抽樣的方法,在女職工中選取5人,再從這5人中隨機(jī)抽取2人進(jìn)行采訪,求這2人游覽的景點(diǎn)不同的概率.

附:,.

P

0.010

0.005

0.001

k

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知多面體ABCDEF中,四邊形ABFE為正方形,,,GAB的中點(diǎn),.

1)求證:平面CDEF;

2)求平面ACD與平面BCF所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓與橢圓相交于點(diǎn)M0,1),N0,-1),且橢圓的離心率為.

1)求的值和橢圓C的方程;

2)過點(diǎn)M的直線交圓O和橢圓C分別于A,B兩點(diǎn).

①若,求直線的方程;

②設(shè)直線NA的斜率為,直線NB的斜率為,問:是否為定值? 如果是,求出定值;如果不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班50名學(xué)生期中考試數(shù)學(xué)成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].從樣本成績不低于80分的學(xué)生中隨機(jī)選取2人,記這2人成績在90分以上(含90分)的人數(shù)為ξ,則ξ的數(shù)學(xué)期望為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

1)若為單調(diào)遞減函數(shù),求的取值范圍;

2)若有兩個不同的零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,為等邊三角形,四邊形為矩形,的中點(diǎn),.

證明:平面平面.

設(shè)二面角的大小為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中e為自然對數(shù)的底數(shù).

1)若函數(shù)的極小值為,求的值;

2)若,證明:當(dāng)時,成立.

查看答案和解析>>

同步練習(xí)冊答案