(本題滿分12分)
已知等差數(shù)列滿足:,的前n項(xiàng)和為
(Ⅰ) 求;
(Ⅱ) 令(),求數(shù)列的前n項(xiàng)和

(1)((2)=

解析試題分析:(Ⅰ)設(shè)等差數(shù)列的公差為,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/47/5/1pm1v2.png" style="vertical-align:middle;" />,,
所以有,解得,                                 ……2分
所以;                                              ……4分
==.                                            ……6分
(Ⅱ)由(Ⅰ)知,
所以===,                ……8分
所以===
即數(shù)列的前n項(xiàng)和=.                                   ……12分
考點(diǎn):本小題主要考查等差數(shù)列的通項(xiàng)公式、等差數(shù)列的前項(xiàng)和公式的應(yīng)用和裂項(xiàng)相消法求數(shù)列的前項(xiàng)和,考查了學(xué)生的運(yùn)算求解能力.
點(diǎn)評(píng):使用裂項(xiàng)法求和時(shí),要注意正負(fù)項(xiàng)相消時(shí)消去了哪些項(xiàng),保留了哪些項(xiàng),切不可漏寫未被消去的項(xiàng),未被消去的項(xiàng)有前后對(duì)稱的特點(diǎn),實(shí)質(zhì)上造成正負(fù)相消是此法的根源和目的.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列中,,前10項(xiàng)的和
(1)求數(shù)列的通項(xiàng)公式;
(2)若從數(shù)列中,依次取出第2、4、8,…,,…項(xiàng),按原來的順序排成一個(gè)新的數(shù)列,試求新數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
(1)已知正項(xiàng)等差數(shù)列的前項(xiàng)和為,若,且成等比數(shù)列.求的通項(xiàng)公式. 
(2)數(shù)列中,,.求的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分)
若等差數(shù)列的前項(xiàng)和為,且滿足為常數(shù),則稱該數(shù)列為數(shù)列.
(1)判斷是否為數(shù)列?并說明理由;
(2)若首項(xiàng)為且公差不為零的等差數(shù)列數(shù)列,試求出該數(shù)列的通項(xiàng)公式;
(3)若首項(xiàng)為,公差不為零且各項(xiàng)為正數(shù)的等差數(shù)列數(shù)列,正整數(shù)滿足,求的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題14分)
在等差數(shù)列中,,.
(1)求數(shù)列的通項(xiàng);
(2)令,證明:數(shù)列為等比數(shù)列;
(3)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知{an}為等差數(shù)列,且a3=-6,a6=0.
(1)求{an}的通項(xiàng)公式;
(2)若等比數(shù)列{bn}滿足b1=-8,b2=a1+a2+a3,求{bn}的前n項(xiàng)和公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前項(xiàng)和為,且,數(shù)列中,,點(diǎn)在直線上.
(I)求數(shù)列的通項(xiàng);
(II) 設(shè),求數(shù)列的前n項(xiàng)和,并求滿足的最大正整數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列{an}的前n項(xiàng)的和記為Sn.如果a4=-12,a8=-4.
(1)求數(shù)列{an}的通項(xiàng)公式;(2)求Sn的最小值及其相應(yīng)的n的值;
(3)從數(shù)列{an}中依次取出a1,a2,a4,a8,…,,…,構(gòu)成一個(gè)新的數(shù)列{bn},
求{bn}的前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列的前n項(xiàng)和為,點(diǎn)均在函數(shù)y=-x+12的圖像上.
(Ⅰ)寫出關(guān)于n的函數(shù)表達(dá)式;
(Ⅱ)求數(shù)列的前n項(xiàng)的和.

查看答案和解析>>

同步練習(xí)冊(cè)答案