【題目】函數(shù)f(x)=lnx﹣ax2+x有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是( )
A.(0,1)
B.(﹣∞,1)
C.(﹣∞, )
D.(0, )
【答案】A
【解析】解:∵函數(shù)f(x)=lnx﹣ax2+x有兩個(gè)不同的零點(diǎn), 不妨令g(x)=lnx,h(x)=ax2﹣x,
將零點(diǎn)問題轉(zhuǎn)化為兩個(gè)函數(shù)交點(diǎn)的問題;
又函數(shù)h(x)=x(ax﹣1),
當(dāng)a≤0時(shí),g(x)和h(x)只有一個(gè)交點(diǎn),不滿足題意;
當(dāng)a>0時(shí),由lnx﹣ax2+x=0,得a= ;
令r(x)= ,則r′(x)= = ,
當(dāng)0<x<1時(shí),r'(x)>0,r(x)是單調(diào)增函數(shù),
當(dāng)x>1時(shí),r'(x)<0,r(x)是單調(diào)減函數(shù),且 >0,∴0<a<1;
或當(dāng)a>0時(shí),作出兩函數(shù)g(x)=lnx,h(x)=ax2﹣x的圖象,如圖所示;
g(x)=lnx交x軸于點(diǎn)(1,0),
h(x)=ax2﹣x交x軸于點(diǎn)(0,0)和點(diǎn)( ,0);
要使方程有兩個(gè)零點(diǎn),應(yīng)滿足兩函數(shù)有兩個(gè)交點(diǎn),
即 >1,解得0<a<1;
∴a的取值范圍是(0,1).
故選:A.
函數(shù)f(x)=lnx﹣ax2+x有兩個(gè)不同的零點(diǎn),轉(zhuǎn)化為函數(shù)g(x)=lnx和h(x)=ax2﹣x交點(diǎn)的問題;
討論a≤0時(shí)不滿足題意,a>0時(shí),求得(a)max=1,當(dāng)x→+∞時(shí),a→0,從而可得答案.
或a>0時(shí),作出兩函數(shù)g(x)=lnx,h(x)=ax2﹣x的圖象,由 >1求出a的取值范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓與直線,且直線有唯一的一個(gè)點(diǎn),使得過點(diǎn)作圓的兩條切線互相垂直,則_____;設(shè)是直線上的一條線段,若對于圓上的任意一點(diǎn),則的最小值_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方體的棱長為2,則以下四個(gè)命題中錯(cuò)誤的是
A. 直線與為異面直線 B. 平面
C. D. 三棱錐的體積為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,直線
(1)求證:不論取何實(shí)數(shù),直線與圓總有兩個(gè)不同的交點(diǎn);
(2)設(shè)直線與圓交于點(diǎn),當(dāng)時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,底面ABCD是邊長為2的菱形,∠ABC=60°,PA⊥PB,PC=2.
(1)求證:平面PAB⊥平面ABCD;
(2)若PA=PB,求二面角A﹣PC﹣D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知三棱錐中,為中點(diǎn),為中點(diǎn),且為正三角形.
(I)求證:平面;
(II)求證:平面平面;
(III)若,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求適合下列條件的圓錐曲線的標(biāo)準(zhǔn)方程:
(1)拋物線的焦點(diǎn)是橢圓的上頂點(diǎn);
(2)橢圓的焦距是8,離心率等于.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)向量 =(cosθ,sinθ), =(﹣ , );
(1)若 ∥ ,且θ∈(0,π),求θ;
(2)若|3 + |=| ﹣3 |,求| + |的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com