16.觀察下列各式:1+$\frac{1}{2^2}<\frac{3}{2}1+\frac{1}{2^2}+\frac{1}{3^2}<\frac{5}{3}1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}<\frac{7}{4}$…照此規(guī)律,當n?N*時,1+$\frac{1}{2^2}+\frac{1}{3^2}+…+\frac{1}{{{{(n+1)}^2}}}$<$\frac{2n+1}{n+1}$.

分析 由已知的三個等式總結(jié)項數(shù)以及最后一項的分母變化以及右邊分數(shù)變化與序號的關系,找到規(guī)律.

解答 解:觀察下列各式:1+$\frac{1}{2^2}<\frac{3}{2}1+\frac{1}{2^2}+\frac{1}{3^2}<\frac{5}{3}1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}<\frac{7}{4}$…照此規(guī)律,
發(fā)現(xiàn)不等式的左右兩邊:不等式的右邊的分子是$\frac{2n+1}{n+1}$的形式,分母是n+1的形式,
故由歸納推理的模式可得:當n?N*時,1+$\frac{1}{2^2}+\frac{1}{3^2}+…+\frac{1}{{{{(n+1)}^2}}}$<$\frac{2n+1}{n+1}$
故答案為:$\frac{2n+1}{n+1}$.

點評 本題考查了歸納推理關鍵是從已知的不等式發(fā)現(xiàn)左右兩邊變化與序號的關系,發(fā)現(xiàn)總結(jié)規(guī)律.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+x+a,}&{x<0}\\{\frac{1}{x},}&{x>0}\end{array}\right.$的圖象上存在不同的兩點A、B,使得曲線y=f(x)在這兩點處的切線重合,則實數(shù)a的取值范圍是( 。
A.($\frac{1}{4}$,+∞)B.(2,+∞)C.(-∞,2)D.(-1,$\frac{1}{4}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知實數(shù)m,n滿足logam>logan(a>1),則下列關系式不恒成立的是( 。
A.|m|>|n|B.($\frac{1}{2}$)m<($\frac{1}{2}$)nC.sinm>sinnD.m${\;}^{\frac{1}{2}}$>n${\;}^{\frac{1}{2}}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.將甲、乙等5位同學分別保送到北京大學、上海交通大學、浙江大學三所大學就讀,則每所大學至少保送一人的不同保送方法有(  )
A.240種B.180種C.150種D.540種

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知函數(shù)f(x)=x3  的切線的斜率為12,則這樣的切線有( 。
A.1條B.2條C.多余2條D.不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.設$\int_0^{\frac{π}{2}}{sinxdx}=K$,則$\int_0^{\frac{5}{2}π}{|sinx|dx}$=( 。
A.KB.2.5KC.4KD.5K

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.在等比數(shù)列{an}中,“a4,a12是方程x2+3x+1=0的兩根”是“a8=±1”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.將全集正正整數(shù)排成一個三角形數(shù)陣:

根據(jù)以上排列規(guī)律,數(shù)陣中第n行的從左到右的第3個數(shù)是$\frac{{n}^{2}-n+6}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知等比數(shù)列{an}中,a1=2,公比q=-2,則通項公式a2n=-4n  .

查看答案和解析>>

同步練習冊答案