2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+x+a,}&{x<0}\\{\frac{1}{x},}&{x>0}\end{array}\right.$的圖象上存在不同的兩點A、B,使得曲線y=f(x)在這兩點處的切線重合,則實數(shù)a的取值范圍是( 。
A.($\frac{1}{4}$,+∞)B.(2,+∞)C.(-∞,2)D.(-1,$\frac{1}{4}$)

分析 先根據(jù)導數(shù)的幾何意義寫出函數(shù)f(x)在點A、B處的切線方程,再利用兩直線重合的充要條件:斜率相等且縱截距相等,列出關系式,從而得出a=$\frac{1}{4}$(t4+2t2+8t+1),t>0,由單調(diào)性可得出a的取值范圍.

解答 解:當x<0時,f(x)=x2+x+a的導數(shù)為f′(x)=2x+1;
當x>0時,f(x)=$\frac{1}{x}$的導數(shù)為f′(x)=-$\frac{1}{{x}^{2}}$,
設A(x1,f(x1)),B(x2,f(x2))為該函數(shù)圖象上的兩點,且x1<x2,
當x1<x2<0,或0<x1<x2時,f′(x1)≠f′(x2),故x1<0<x2,
當x1<0時,函數(shù)f(x)在點A(x1,f(x1))處的切線方程為:
y-(x12+x1+a)=(2x1+1)(x-x1);
當x2>0時,函數(shù)f(x)在點B(x2,f(x2))處的切線方程為y-$\frac{1}{{x}_{2}}$=-$\frac{1}{{{x}_{2}}^{2}}$(x-x2).
兩直線重合的充要條件是-$\frac{1}{{{x}_{2}}^{2}}$=2x1+1①,$\frac{2}{{x}_{2}}$=a-x12②,
由x1<0<x2得0<$\frac{1}{{x}_{2}}$<1,
由①②令t=$\frac{1}{{x}_{2}}$,則t>0,且a=$\frac{1}{4}$(t4+2t2+8t+1)在(0,+∞)為增函數(shù),
∴a>$\frac{1}{4}$,
故選:A.

點評 本題主要考查了導數(shù)的幾何意義等基礎知識,考查了推理論證能力、運算能力、創(chuàng)新意識,考查了函數(shù)與方程、分類與整合、轉(zhuǎn)化與化歸等思想方法.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

12.我國古代名著《九章算術》中有這樣一段話:“今有金錘,長五尺,斬本一尺,重四斤.斬末一尺,重二斤.”意思是:“現(xiàn)有一根金錘,頭部的1尺,重4斤;尾部的1尺,重2斤;且從頭到尾,每一尺的重量構(gòu)成等差數(shù)列.”則下列說法錯誤的是( 。
A.該金錘中間一尺重3斤
B.中間三尺的重量和是頭尾兩尺重量和的3倍
C.該金錘的重量為15斤
D.該金錘相鄰兩尺的重量之差的絕對值為0.5斤

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.用線性回歸模型求得甲、乙、丙3組不同的數(shù)據(jù)的線性相關系數(shù)分別為0.81,-0.98,0.63,其中乙(填甲、乙、丙中的一個)組數(shù)據(jù)的線性相關性最強.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.曲線y=lgx在x=1處的切線斜率是( 。
A.$\frac{1}{ln10}$B.ln10C.lneD.$\frac{1}{lne}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知等比數(shù)列{an}滿足an>0,且a5•a2n-5=22n(n≥3),求數(shù)列{log2an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.設z1,z2是復數(shù),給出下列四個命題:
①若|z1-z2|=0,則$\overline{{z}_{1}}$=$\overline{{z}_{2}}$                 ②若z1=$\overline{{z}_{2}}$,則$\overline{{z}_{1}}$=z2
③若|z1|=|z2|,則z1•$\overline{{z}_{1}}$=z2•$\overline{{z}_{2}}$          ④若|z1|=|z2|,則z12=z22
其中真命題的序號是①②③.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.在如圖所示的平面圖形中,已知CD=$\sqrt{2}$,∠BCA=45°,∠ACD=105°,∠CDB=15°,∠BDA=30°.
(Ⅰ)求△BCD的面積;
(Ⅱ)求AC,AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.設函數(shù)f(x)=$\frac{{x}^{2}}{{e}^{x}}$,g(x)=lnx+$\frac{a}{x}$(a>0).
(1)求函數(shù)f(x)的極值;
(2)若?x1、x2∈(0,+∞),使得g(x1)≤f(x2)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.觀察下列各式:1+$\frac{1}{2^2}<\frac{3}{2}1+\frac{1}{2^2}+\frac{1}{3^2}<\frac{5}{3}1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}<\frac{7}{4}$…照此規(guī)律,當n?N*時,1+$\frac{1}{2^2}+\frac{1}{3^2}+…+\frac{1}{{{{(n+1)}^2}}}$<$\frac{2n+1}{n+1}$.

查看答案和解析>>

同步練習冊答案