精英家教網 > 高中數學 > 題目詳情

【題目】如圖,網格紙上小正方形的邊長為1,粗線畫出的是某四面體的三視圖,則該四面體的外接球半徑為( )

A.2
B.
C.
D.2

【答案】C
【解析】
解:由三視圖知幾何體是三棱錐A﹣BCD,為棱長為4的正方體一部分,
直觀圖如圖所示:

由正方體的性質可得,AB=AD=BD=4
AC=BC= =2 ,CD= =6,
設三棱錐C﹣ABD的外接球球心是O,設半徑是R,
取AB的中點E,連接CE、DE,如圖所示:

設OA=OB=OC=OD=R,△ABD是等邊三角形,
∴O在底面△ABD的射影是△ABD中心F,
∵DE⊥BE,BE=2 ,∴DE= =
同理可得,CE=2 ,則滿足CE2+DE2=CD2 , 即CE⊥DE,
在RT△CED中,設OF=x,
∵F是等邊△ABD的中心,
,

,
,解得x= ,
代入其中一個方程得,R= = = ,
∴該四面體的外接球半徑是 ,
故選:C.
根據三視圖知幾何體是三棱錐為棱長為4的正方體一部分,畫出直觀圖,由正方體的性質求出棱長、判斷出各面形狀,畫出三棱錐C﹣ABD以及外接球,由△ABD是等邊三角形,判斷出球心O在△ABD的射影的位置,判斷線與線的位置關系,設出未知數畫出平面圖形,利用勾股定理列出方程組,求出該四面體的外接球半徑.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知關于的函數.

(1)當時,求函數在點處的切線方程;

(2)設,討論函數的單調區(qū)間;

(3)若函數沒有零點,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設數列{an}的前n項為Sn , 點(n, ),(n∈N*)均在函數y=3x﹣2的圖象上.
(1)求數列{an}的通項公式.
(2)設bn= ,Tn為數列{bn}的前n項和,求使得Tn 對所有n∈N*都成立的最小正整數m.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,平面直角坐標系xOy中,△AOB和△COD為兩等腰直角三角形,A(﹣2,0),C(a,0),(a>0),設△AOB和△COD的
外接圓圓心分別為點M、N.
(Ⅰ)若⊙M與直線CD相切,求直線CD的方程;
(Ⅱ)若直線AB截⊙N所得弦長為4,求⊙N的標準方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱錐V﹣ABC中,平面VAB⊥平面ABC,△VAB為等邊三角形,AC⊥BC且AC=BC= ,O,M分別為AB,VA的中點.
(1)求證:VB∥平面MOC;
(2)求證:平面MOC⊥平面VAB
(3)求三棱錐V﹣ABC的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,已知橢圓,如圖所示,斜率為且不過原點的直線交橢圓于兩點,線段的中點為,射線交橢圓于點,交直線于點.

(1)求的最小值;

(2)若,求證:直線過定點.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=Asin(ωx+φ),x∈R(其中 )的圖象與x軸的交點中,相鄰兩個交點之間的距離為 ,且圖象上一個最低點為 . (Ⅰ)求f(x)的解析式;
(Ⅱ)當 ,求f(x)的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知冪函數f(x)的圖象經過點 . (Ⅰ)求函數f(x)的解析式;
(Ⅱ)判斷函數f(x)在區(qū)間(0,+∞)上的單調性,并用單調性的定義證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】將一個半徑適當的小球放入如圖所示的容器自上方的入口處,小球自由下落,小氣在下落的過程中,將遇到黑色障礙物3次,最后落入A袋或B袋中,已知小球每次遇到障礙物時,向左、右兩邊下落的概率分別是 ,
(1)分別求出小球落入A袋和B袋中的概率;
(2)在容器 入口處依次放入4個小球,記ξ為落入B袋中的小球個數,求ξ的分布列和數學期望.

查看答案和解析>>

同步練習冊答案