精英家教網 > 高中數學 > 題目詳情

【題目】已知A是拋物線Ey22px(p>0)上的一點,以點A和點B(2,0)為直徑兩端點的圓C交直線x1MN兩點.

1)若|MN|2,求拋物線E的方程;

2)若0p1,拋物線E與圓(x5)2+y2=9x軸上方的交點為P,Q,點GPQ的中點,O為坐標原點,求直線OG斜率的取值范圍.

【答案】1.2

【解析】

1)設A的坐標為Ax0,y0),由題意可得圓心C的坐標,求出C到直線x1的距離.由半個弦長,圓心到直線的距離及半徑構成直角三角形可得p的值,進而求出拋物線的方程;

2)將拋物線的方程與圓的方程聯立可得韋達定理,進而求出中點G的坐標,再求出直線OG的斜率的表達式,換元可得斜率的取值范圍.

1)設Ax0,y0)且y022px0,則圓心C),

C的直徑|AB|,

圓心C到直線x1的距離d|1|||,

因為|MN|2,所以(2+d2=(2,即1y022px0,

整理可得(2p4x00,所以p2

所以拋物線的方程為:y24x;

2)聯立拋物線與圓的方程整理可得x225px+160,△>0,

Px1,y1),Qx2,y2),則x1+x225p),x1x216,

所以中點G的橫坐標xG5p,yG

所以kOG0P1),

t5pt∈(4,5)),則kOG),

解得0kOG,

所以直線OG斜率的取值范圍(0,.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】管道清潔棒是通過在管道內釋放清潔劑來清潔管道內壁的工具,現欲用清潔棒清潔一個如圖1所示的圓管直角彎頭的內壁,其縱截面如圖2所示,一根長度為的清潔棒在彎頭內恰好處于位置(圖中給出的數據是圓管內壁直徑大小,.

1)請用角表示清潔棒的長;

2)若想讓清潔棒通過該彎頭,清潔下一段圓管,求能通過該彎頭的清潔棒的最大長度.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知,

1若展開式中第5項,第6項與第7項的二項式系數成等差數列,求展開式中二項式系數最大項

的系數;

2若展開式前三項的二項式系數和等于79,求展開式中系數最大的項.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】執(zhí)行如圖所示程序框圖,若輸出的值為,在條件框內應填寫( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知等差數列{an}的各項均為正數,Sn為等差數列{an}的前n項和,.

1)求數列{an}的通項an;

2)設bnan3n,求數列{bn}的前n項和Tn.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知定義在上的函數,其中,e為自然對數的底數.

1)求證:有且只有一個極小值點;

2)若不等式上恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,直線l的參數方程為t為參數),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,圓C的極坐標方程為.

1)求直線l的普通方程和圓C的直角坐標方程;

2)直線l與圓C交于AB兩點,點P(2,1),求|PA||PB|的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,已知曲線與曲線,(為參數).以坐標原點為極點,軸的正半軸為極軸建立極坐標系.

1)寫出曲線,的極坐標方程;

2)在極坐標系中,已知,的公共點分別為,,,當時,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,曲線的參數方程為為參數),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,直線的極坐標方程為.

1)求的普通方程和的直角坐標方程;

2)直線軸的交點為,經過點的直線與曲線交于兩點,若,求直線的傾斜角.

查看答案和解析>>

同步練習冊答案