【題目】已知數(shù)列和滿足:,且成等比數(shù)列,成等差數(shù)列.
(1)行列式,且,求證:數(shù)列是等差數(shù)列;
(2)在(1)的條件下,若不是常數(shù)列,是等比數(shù)列,
①求和的通項公式;
②設是正整數(shù),若存在正整數(shù),使得成等差數(shù)列,求的最小值.
【答案】(1)見解析;(2)①,;②6
【解析】
(1)根據(jù)行列式的代數(shù)余子式可得,再根據(jù)等差中項可證;
(2)①設等差數(shù)列的公差為,等比數(shù)列的公比為,運用等差數(shù)列和等比數(shù)列的性質和通項公式,解方程組即可得到所求通項;
②由等差數(shù)列的中項性質和分類討論,即可得到最小值.
證明:因為,
所以,,
因為,所以,即,
所以數(shù)列是等差數(shù)列.
①由(1)知數(shù)列是等差數(shù)列,設公差為(),設等比數(shù)列 的公比為,
因為成等比數(shù)列,成等差數(shù)列,
所以且,
所以,且,
結合化簡可得且,
解得,
所以,,
故,.
②因為成等差數(shù)列,
所以,即,
由于,且均為正整數(shù),
所以,,所以,
可得,即,
當時,,,所以不等式不成立,
當或時,成立,
當時,,即時,則有,
所以的最小值為6,當且僅當且或時, 取得最小值6.
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線過點,過點作直線與拋物線交于不同兩點、,過作軸的垂線分別與直線、交于點、,其中為坐標原點.
(1)求拋物線的方程;
(2)寫出拋物線的焦點坐標和準線方程;
(3)求證:為線段的中點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)學中有許多形狀優(yōu)美、寓意美好的曲線,曲線C:就是其中之一(如圖).給出下列三個結論:
①曲線C恰好經(jīng)過6個整點(即橫、縱坐標均為整數(shù)的點);
②曲線C上任意一點到原點的距離都不超過;
③曲線C所圍成的“心形”區(qū)域的面積小于3.
其中,所有正確結論的序號是
A. ①B. ②C. ①②D. ①②③
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左.右焦點分別為,為坐標原點.
(1)若斜率為的直線交橢圓于點,若線段的中點為,直線的斜率為,求的值;
(2)已知點是橢圓上異于橢圓頂點的一點,延長直線,分別與橢圓交于點,設直線的斜率為,直線的斜率為,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,為自然對數(shù)的底數(shù).
(1)當時,證明:函數(shù)只有一個零點;
(2)若函數(shù)存在兩個不同的極值點,,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)若在區(qū)間上不是單調函數(shù),求實數(shù)的范圍;
(2)若對任意,都有恒成立,求實數(shù)的取值范圍;
(3)當時,設,對任意給定的正實數(shù),曲線上是否存在兩點,,使得是以(為坐標原點)為直角頂點的直角三角形,而且此三角形斜邊中點在軸上?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù),a為實數(shù),
求函數(shù)的單調區(qū)間;
若存在實數(shù)a,使得對任意恒成立,求實數(shù)m的取值范圍.提示:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com