(本小題滿分12分)
小白鼠被注射某種藥物后,只會表現(xiàn)為以下三種癥狀中的一種:興奮、無變化(藥物沒有發(fā)生作用)、遲鈍.若出現(xiàn)三種癥狀的概率依次為現(xiàn)對三只小白鼠注射這種藥物.
(Ⅰ)求這三只小白鼠表現(xiàn)癥狀互不相同的概率;
(Ⅱ)用表示三只小白鼠共表現(xiàn)癥狀的種數(shù),求的分布列及數(shù)學期望.
17.(本小題滿分12分)
解:(Ⅰ)用表示第一只小白鼠注射藥物后表現(xiàn)癥狀為興奮、無變化、及遲鈍,用表示第二只小白鼠注射藥物后表現(xiàn)癥狀為興奮、無變化、及遲鈍,用表示第三只小白鼠注射藥物后表現(xiàn)癥狀為興奮、無變化、及遲鈍.三只小白鼠反應互不相同的概率為      ----------------4分
(Ⅱ)可能的取值為.                    ----------------5分
,  ---------6分
. ------8分
所以,的分布列是

1
2
3




                                                                --------10分
所以,.                        ---------12分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

在某國際高端經(jīng)濟論壇上,前六位發(fā)言的是與會的含有甲、乙的6名中國經(jīng)濟學專家,他們的發(fā)言順序通過隨機抽簽方式?jīng)Q定.
(Ⅰ)求甲、乙兩位專家恰好排在前兩位出場的概率;
(Ⅱ)發(fā)言中甲、乙兩位專家之間的中國專家數(shù)記為,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

、隨機變量Y~,且,,則    
A. n="4" p=0.9B.n="9" p="0.4" C.n="18" p=0.2D.N="36" p=0.1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

一個口袋中裝有大小相同的個紅球()和個白球,一次摸獎從中摸兩個球,兩個球的顏色不同則為中獎。
(Ⅰ)試用表示一次摸獎中獎的概率
(Ⅱ)記從口袋中三次摸獎(每次摸獎后放回)恰有一次中獎的概率為,求的最大值.
(Ⅲ)在(Ⅱ)的條件下,將個白球全部取出后,對剩下的個紅球全部作如下標記:記上號的有個(),其余的紅球記上號,現(xiàn)從袋中任取一球。表示所取球的標號,求的分布列、期望和方差.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

現(xiàn)有兩個項目,投資項目萬元,一年后獲得的利潤為隨機變量(萬元),根據(jù)市場分析,的分布列為:
X1
12
11.8
11.7
P



 
投資項目萬元,一年后獲得的利潤(萬元)與項目產品價格的調整(價格上調或下調)有關, 已知項目產品價格在一年內進行次獨立的調整,且在每次調整中價格下調的概率都是.
經(jīng)專家測算評估項目產品價格的下調與一年后獲得相應利潤的關系如下表:
項目產品價格一年內下調次數(shù)(次)



投資萬元一年后獲得的利潤(萬元)



 
(Ⅰ)求的方差;
(Ⅱ)求的分布列;
(Ⅲ)若,根據(jù)投資獲得利潤的差異,你愿意選擇投資哪個項目?
(參考數(shù)據(jù):).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
為加強大學生實踐、創(chuàng)新能力和團隊精神的培養(yǎng),促進高等教育教學改革,教育部門主辦了全國大學生智能汽車競賽. 該競賽分為預賽和決賽兩個階段,參加決賽的隊伍按照抽簽方式?jīng)Q定出場順序.通過預賽,選拔出甲、乙等五支隊伍參加決賽.
(Ⅰ)求決賽中甲、乙兩支隊伍恰好排在前兩位的概率;
(Ⅱ)若決賽中甲隊和乙隊之間間隔的隊伍數(shù)記為,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

某班有的學生數(shù)學成績優(yōu)秀,如果從班中隨機地找出5名學生,那么其中數(shù)學
成績優(yōu)秀的學生數(shù)服從二項分布的值為(   )                  
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
在一個盒子中,放有標號分別為1,2,3的三張卡片,先從這個盒子中有放回地先后抽取兩張卡片,設這兩張卡片的號碼分別為為坐標原點,
(1)求隨機變量的最大值,并求事件“取最大值”的概率;
(2)求的分布列及數(shù)學期望。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分8分)某校高二年級某班的數(shù)學課外活動小組有6名男生,4名女生,從中選出4人參加數(shù)學競賽考試,用X表示其中男生的人數(shù),
(1)請列出X的分布列;
(2)根據(jù)你所列的分布列求選出的4人中至少有3名男生的概率

查看答案和解析>>

同步練習冊答案