精英家教網 > 高中數學 > 題目詳情
在某國際高端經濟論壇上,前六位發(fā)言的是與會的含有甲、乙的6名中國經濟學專家,他們的發(fā)言順序通過隨機抽簽方式決定.
(Ⅰ)求甲、乙兩位專家恰好排在前兩位出場的概率;
(Ⅱ)發(fā)言中甲、乙兩位專家之間的中國專家數記為,求的分布列和數學期望.
(1)
(2)的分布列為

0
1
2
3
4
P





                                                                   
∴E=0×+1×+2×+3×+4×=

試題分析:解:(Ⅰ)設“甲、乙兩位專家恰好排在前兩位出場”為事件A,則
P(A)==.                                      3分
答:甲、乙兩位專家恰好排在前兩位出場的概率為.            4分
(Ⅱ)的可能取值為0,1,2,3,4.                      5分
P(=0)==,P(=1)==,
P(=2)==,P(=3)==,
P(=4)==.                                   9分
的分布列為

0
1
2
3
4
P





                                                                    10分
∴E=0×+1×+2×+3×+4×=.              12分
點評:主要是考查了等可能事件的概率和離散型隨機變量的分布列的求解和運用。屬于基礎題。
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

某高校在2013年的自主招生考試成績中隨機抽取100名學生的筆試成績,按成績共分五組,得到頻率分布表如下表所示。
組號
分組
頻數
頻率
第一組
[160,165)
5
0.05
第二組
[165,170)
35
0.35
第三組
[170,175)
30
a
第四組
[175,180)
b
0.2
第五組
[180,185)
10
0.1
(Ⅰ)求的值;
(Ⅱ)為了能選出最優(yōu)秀的學生,高校決定在筆試成績高的第3、4、5組中用分層抽樣的方法抽取12人進入第二輪面試,求第3、4、5組中每組各抽取多少人進入第二輪的面試;考生李翔的筆試成績?yōu)?78分,但不幸沒入選這100人中,那這樣的篩選方法對該生而言公平嗎?為什么?
(Ⅲ)在(2)的前提下,學校決定在12人中隨機抽取3人接受“王教授”的面試,設第4組中被抽取參加“王教授”面試的人數為,求的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

某商場為吸引顧客消費推出一項促銷活動,促銷規(guī)則如下:到該商場購物消費滿100元就可轉動如圖所示的轉盤一次,進行抽獎(轉盤為十二等分的圓盤),滿200元轉兩次,以此類推;在轉動過程中,假定指針停在轉盤的任一位置都是等可能的;若轉盤的指針落在A區(qū)域,則顧客中一等獎,獲得10元獎金;若轉盤落在B區(qū)域或C區(qū)域,則顧客中二等獎,獲得5元獎金;若轉盤指針落在其他區(qū)域,則不中獎(若指針停到兩區(qū)間的實線處,則重新轉動).若顧客在一次消費中多次中獎,則對其獎勵進行累加.已知顧客甲到該商場購物消費了268元,并按照規(guī)則參與了促銷活動.

(1)求顧客甲中一等獎的概率;
(2)記X為顧客甲所得的獎金數,求X的分布列及其數學期望.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

.已知盒子中有4個紅球,2個白球,從中一次抓三個球
(1)求沒有抓到白球的概率;
(2)記抓到球中的紅球數為X ,求X的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

某項選拔共有三輪考核,每輪設有一個問題,能正確回答問題者進入下一輪考試,否則即被淘汰,已知某選手能正確回答第一、二、三輪的問題的概率分別為且各輪問題能否正確回答互不影響.
(Ⅰ)求該選手被淘汰的概率;
(Ⅱ)該選手在選拔中回答問題的個數記為ξ,求隨機變量ξ的分布列與數學期望.
(注:本小題結果可用分數表示)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
已知甲盒內有大小相同的1個紅球和3個黑球,乙盒內有大小相同的2個紅球和4個黑球,現從甲、乙兩個盒內各任取2個球.
(Ⅰ)求取出的4個球中恰有1個紅球的概率;
(Ⅱ)設“從甲盒內取出的2個球恰有1個為黑球”為事件A;“從乙盒內取出的2個球都是黑球”為事件B,求在事件A發(fā)生的條件下,事件B發(fā)生的概率;
(Ⅲ)設為取出的4個球中紅球的個數,求的分布列和數學期望。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)電信公司進行促銷活動,促銷方案為顧客消費1000元,便可獲得獎券一張,每張獎券中獎的概率為,中獎后電信公司返還顧客現金1000元,小李購買一臺價格2400元的手機,只能得2張獎券,于是小李補償50元給同事購買一臺價格600元的小靈通(可以得到三張獎券),小李抽獎后實際支出為X(元).
(I)求X的分布列;(II)試說明小李出資50元增加1張獎券是否劃算。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
小白鼠被注射某種藥物后,只會表現為以下三種癥狀中的一種:興奮、無變化(藥物沒有發(fā)生作用)、遲鈍.若出現三種癥狀的概率依次為現對三只小白鼠注射這種藥物.
(Ⅰ)求這三只小白鼠表現癥狀互不相同的概率;
(Ⅱ)用表示三只小白鼠共表現癥狀的種數,求的分布列及數學期望.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

牧場的10頭牛,因誤食瘋牛病毒污染的飼料被感染,已知該病的發(fā)病率為0.02,設發(fā)病牛的頭數為X,則D(X)等于_____________

查看答案和解析>>

同步練習冊答案