【題目】已知點(diǎn)是以為焦點(diǎn)的雙曲線上的一點(diǎn),且,則的周長(zhǎng)為______

【答案】

【解析】分析:根據(jù)題意,由雙曲線的標(biāo)準(zhǔn)方程可得a、b的值,由雙曲線的定義可得||PF1|﹣|PF2||=2a=2,又由|PF1|=3|PF2|,計(jì)算可得|PF1|=3,|PF2|=1,又由|F1F2|=2c=2,由三角形的周長(zhǎng)公式計(jì)算可得答案.

詳解:根據(jù)題意,雙曲線C的方程為x2﹣y2=1,則a=1,b=1,則c=,

||PF1|﹣|PF2||=2a=2,

又由|PF1|=3|PF2|,則|PF1|=3,|PF2|=1,

又由c=,則|F1F2|=2c=2,

△PF1F2的周長(zhǎng)l=|PF1|+|PF2|+|F1F2|=4+2

故答案為:4+2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知, , ,平面平面, , 中點(diǎn).

(Ⅰ)證明: 平面;

(Ⅱ)求直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線上的點(diǎn)均在曲線外,且對(duì)上任意一點(diǎn),到直線的距離等于該點(diǎn)與曲線上點(diǎn)的距離的最小值.

(1)求動(dòng)點(diǎn)的軌跡的方程;

(2)過(guò)點(diǎn)的直線與曲線交于不同的兩點(diǎn)、,過(guò)點(diǎn)的直線與曲線交于另一點(diǎn),且直線過(guò)點(diǎn),求證:直線過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列結(jié)論中:

定義在R上的函數(shù)f(x)在區(qū)間(-∞,0]上是增函數(shù),在區(qū)間[0,+∞)上也是增函數(shù),則函數(shù)f(x)R上是增函數(shù);f(2)=f(-2),則函數(shù)f(x)不是奇函數(shù);函數(shù)y=x-0.5(0,1)上的減函數(shù);對(duì)應(yīng)法則和值域相同的函數(shù)的定義域也相同;x0是二次函數(shù)y=f(x)的零點(diǎn),m<x0<n,那么f(m)f(n)<0一定成立.

寫出上述所有正確結(jié)論的序號(hào):_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近期,某公交公司分別推出支付寶和微信掃碼支付乘車活動(dòng),活動(dòng)設(shè)置了一段時(shí)間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來(lái)越多的人開始使用掃碼支付,某線路公交車隊(duì)統(tǒng)計(jì)了活動(dòng)剛推出一周內(nèi)每一天使用掃碼支付的人次,用x表示活動(dòng)推出的天數(shù),y表示每天使用掃碼支付的人次(單位:十人次),繪制了如圖所示的散點(diǎn)圖:

(I)根據(jù)散點(diǎn)圖判斷在推廣期內(nèi),(c,d為為大于零的常數(shù))哪一個(gè)適宜作為掃碼支付的人次y關(guān)于活動(dòng)推出天數(shù)x的回歸方程類型?(給出判斷即可,不必說(shuō)明理由)

(Ⅱ)根據(jù)(I)的判斷結(jié)果求y關(guān)于x的回歸方程,并預(yù)測(cè)活動(dòng)推出第8天使用掃碼支付的人次.

參考數(shù)據(jù):

4

62

1.54

2535

50.12

140

3.47

其中,

附:對(duì)于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為:,。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng),時(shí),求滿足的值;

(2)若函數(shù)是定義在上的奇函數(shù).

①存在,使得不等式有解,求實(shí)數(shù)的取值范圍;

②若函數(shù)滿足,若對(duì)任意,不等式恒成立,求實(shí)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,,,.

(1)求證:;

(2)若,,的中點(diǎn).

(i)過(guò)點(diǎn)作一直線平行,在圖中畫出直線并說(shuō)明理由;

(ii)求平面將三棱錐分成的兩部分體積的比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) 的一段圖像如圖所示.

(1)求此函數(shù)的解析式;

(2)求此函數(shù)在上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)(0<φ<π)

(1)當(dāng)φ時(shí),在給定的坐標(biāo)系內(nèi),用“五點(diǎn)法”做出函數(shù)f(x)在一個(gè)周期內(nèi)的圖象;

(2)若函數(shù)f(x)為偶函數(shù),求φ的值;

(3)在(2)的條件下,求函數(shù)在[﹣π,π]上的單調(diào)遞減區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案