【題目】設(shè)分別是正方體的棱上兩點,且,給出下列四個命題正確的是( )
A.異面直線與所成的角為
B.平面
C.三棱錐的體積為定值;
D.直線與平面所成的角為.
【答案】AC
【解析】
對于選項,是異面直線與所成的角,為,所以正確;對于選項,與不垂直,由此知與平面不垂直,所以錯誤;對于選項,三棱錐的體積為為定值,所以正確;對于選項,直線與平面所成的角為所成角為,所以錯誤.即得解.
如圖所示,
對于選項,因為,是異面直線與所成的角,為,所以異面直線與所成的角為,所以正確;
對于選項,由前面得異面直線與所成的角為,所以與不垂直,由此知與平面不垂直,所以錯誤;
對于選項,三棱錐的體積為為定值,所以正確;
對于選項,在三棱錐中,設(shè)到平面的距離為,,即有,解得,直線與平面所成的角的正弦為,即直線與平面所成的角為所成角為,所以錯誤.
綜上,正確的命題序號是AC.
故選:AC.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的頂點為坐標(biāo)原點,焦點在軸的正半軸上,過焦點作斜率為的直線交拋物線于兩點,且,其中為坐標(biāo)原點.
(1)求拋物線的方程;
(2)設(shè)點,直線分別交準(zhǔn)線于點,問:在軸的正半軸上是否存在定點,使,若存在,求出定點的坐標(biāo),若不存在,試說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱中,,,點為中點,連接交于點,點為中點.
(1)求證:平面;
(2)求證:平面平面;
(3)求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,為平行四邊形ABCD所在平面外一點,M,N分別為AB,PC的中點,平面PAD平面PBC=.
(1)求證:BC∥;
(2)MN與平面PAD是否平行?試證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知(, )展開式的前三項的二項式系數(shù)之和為16,所有項的系數(shù)之和為1.
(1)求和的值;
(2)展開式中是否存在常數(shù)項?若有,求出常數(shù)項;若沒有,請說明理由;
(3)求展開式中二項式系數(shù)最大的項.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左頂點,右焦點分別為,右準(zhǔn)線為,
(1)若直線上不存在點,使為等腰三角形,求橢圓離心率的取值范圍;
(2)在(1)的條件下,當(dāng)取最大值時,點坐標(biāo)為,設(shè)是橢圓上的三點,且,求:以線段的中心為原點,過兩點的圓方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),正項數(shù)列的前項的積為,且,當(dāng)時, 都成立.
(1)若, , ,求數(shù)列的前項和;
(2)若, ,求數(shù)列的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),為常數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)有兩個極值點,,且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的左,右焦點分別為, ,離心率為, 是橢圓上的動點,當(dāng)時, 的面積為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若過點的直線交橢圓于, 兩點,求面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com