已知橢圓 (a>b>0)的一個(gè)頂點(diǎn)為A(0,1),且它的離心率與雙曲線的離心率互為倒數(shù).
(I)求橢圓的方程:
(Ⅱ)過A點(diǎn)且斜率為k的直線與橢圓相交于A、B兩點(diǎn),點(diǎn)M在橢圓上,并且滿足OM=OA+OB,求k的值.
解:(I)雙曲線的離心率為.∴橢圓的離心率為
∵橢圓(a>b>0)的一個(gè)頂點(diǎn)為A(0,1),∴b=1.
∴ ∴ ∴橢圓的方程為
(Ⅱ)過A點(diǎn)且斜率為k的直線的方程是y=kx+1,代入到橢圓方程中,消去y并整理得(1+4k2)x2+8kx=0.
顯然這個(gè)方程有兩解.設(shè)A(x1,y1),B(x2,y2),M(x,y),則可解得
, ∴,
即A(0,1), B(,)
∴ (,)
∴,
將E點(diǎn)的坐標(biāo)代入到橢圓方程中,并去分母可得
展開整理得 ∴
方法二:
(Ⅱ)過A點(diǎn)且斜率為k的直線的方程是y=kx+1,代入到橢圓方程中,消去y并整理得(1+4k2)x2+8kx=0.①
顯然這個(gè)方程有兩解.設(shè)A(x1,y1),B(x2,y2),M(x,y),則
∵OM=OA+OB ∴(x,y)= (x1,y1)+ (x2,y2)
∴ ,
∵點(diǎn)M在C上,∴
∴
∴
∴, 即.②
又由①式知: , , 代入②式得,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
. 19(本小題滿分14分)
已知橢圓 (a>b>0)與直線
x+y-1 = 0相交于A、B兩點(diǎn),且OA⊥OB
(O為坐標(biāo)原點(diǎn)).
(I) 求 + 的值;
(II) 若橢圓長(zhǎng)軸長(zhǎng)的取值范圍是[,],
求橢圓離心率e的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓 (a>b>0),A、B是橢圓上的兩點(diǎn),線段AB的垂直平分線與x軸相交于點(diǎn)P(x0,0).證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江西省協(xié)作體高三5月第二次聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知橢圓(a>b>0)拋物線,從每條曲線上取兩個(gè)點(diǎn),將其坐標(biāo)記錄于下表中:
4 |
1 |
|||
2 |
4 |
2 |
(1)求的標(biāo)準(zhǔn)方程;(2)四邊形ABCD的頂點(diǎn)在橢圓上,且對(duì)角線AC、BD過原點(diǎn)O,若,
(i) 求的最值.
(ii) 求四邊形ABCD的面積;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江西省高三5月高考模擬理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知橢圓(a>b>0)拋物線,從每條曲線上取兩個(gè)點(diǎn),將其坐標(biāo)記錄于下表中:
4 |
1 |
|||
2 |
4 |
2 |
(1)求的標(biāo)準(zhǔn)方程;
(2)四邊形ABCD的頂點(diǎn)在橢圓上,且對(duì)角線AC、BD過原點(diǎn)O,若,
(i) 求的最值.
(ii) 求四邊形ABCD的面積;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年四川省綿陽市高三第二次月考文科數(shù)學(xué)試卷 題型:解答題
已知橢圓(a>b>0)的左、右焦點(diǎn)分別為Fl vF2 ,離心率,A為右頂點(diǎn),K為右準(zhǔn)線與x軸的交點(diǎn),且.
(1) 求橢圓的標(biāo)準(zhǔn)方程
(2) 設(shè)橢圓的上頂點(diǎn)為B,問是否存在直線l,使直線l交橢圓于C,D兩點(diǎn),且橢圓的左焦點(diǎn)F1恰為的垂心?若存在,求出l的方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com