(滿分12分)已知函數(shù)
.(Ⅰ) 求
在
上的最小值;(Ⅱ) 若存在
(
是常數(shù),
=2.71828
)使不等式
成立,求實(shí)數(shù)
的取值范圍;
(Ⅲ) 證明對(duì)一切
都有
成立.
(Ⅰ)
;
(Ⅱ)
。
(Ⅲ) 見(jiàn)解析。
試題分析:(Ⅰ)
…………4分
(Ⅱ)由題意知
,
而
,故
.. …………8分
(Ⅲ) 等價(jià)證明
由(Ⅰ)知
.。... …………12分
點(diǎn)評(píng):利用導(dǎo)數(shù)研究函數(shù)單調(diào)性、確定函數(shù)最值、證明不等式,是導(dǎo)數(shù)的基本應(yīng)用。這類題解法思路明確,需要細(xì)心細(xì)致地計(jì)算。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
如圖,有一邊長(zhǎng)為2米的正方形鋼板
缺損一角(圖中的陰影部分),邊緣線
是以直線
為對(duì)稱軸,以線段
的中點(diǎn)
為頂點(diǎn)的拋物線的一部分.工人師傅要將缺損一角切割下來(lái),使剩余的部分成為一個(gè)直角梯形.
(Ⅰ)請(qǐng)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求陰影部分的邊緣線
的方程;
(Ⅱ)如何畫出切割路徑
,使得剩余部分即直角梯形
的面積最大?
并求其最大值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
函數(shù)
的的單調(diào)遞增區(qū)間是 ( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
(本題滿分15分)
已知函數(shù)
,
是
的導(dǎo)函數(shù)(
為自然對(duì)數(shù)的底數(shù))
(Ⅰ)解關(guān)于
的不等式:
;
(Ⅱ)若
有兩個(gè)極值點(diǎn)
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
設(shè)函數(shù)
.
(Ⅰ)若
,求
的最小值;
(Ⅱ)若
,討論函數(shù)
的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
(本小題滿分12分)
已知
,其中
是自然對(duì)數(shù)的底數(shù),
(1)討論
時(shí),
的單調(diào)性。
(2)求證:在(1)條件下,
(3)是否存在實(shí)數(shù)
,使
得最小值是3,如果存在,求出
的值;如果不存在,說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
函數(shù)
的單調(diào)遞增區(qū)間為____________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
已知函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間與極值點(diǎn);
(2)若
,方程
有三個(gè)不同的根,求
的取值范圍。
查看答案和解析>>