【題目】給出四個命題:①若x23x+20,則x1x2;②若xy0,則x2+y20;③已知x,yN,若x+y是奇數(shù),則x、y中一個是奇數(shù),一個是偶數(shù);④若x1,x2是方程x22x+20的兩根,則x1,x2可以是一橢圓與一雙曲線的離心率,那么(  。

A.③的否命題為假B.①的逆否命題為假

C.②的逆命題為真D.④的逆否命題為假

【答案】C

【解析】

判斷命題①的真假,得逆否命題的真假判斷B;寫出命題②的逆命題并判斷真假判斷C;寫出命題③的否命題并判斷真假判斷A;寫出④的逆否命題并判斷真假判斷D

對于①,若x23x+20,則x1x2,是真命題;所以其逆否命題是真命題,原因是x1,x2是方程的兩根;故B錯誤;

對于②,若xy0,則x2+y20的逆命題為:若x2+y20,則xy0,是真命題,故C正確;

對于③,已知x,yN,若x+y是奇數(shù),則x,y中一個是奇數(shù),一個偶數(shù)的逆命題為:已知x,yN,若x,y中一個是奇數(shù),一個偶數(shù),則x+y是奇數(shù),為真命題;

∵一個命題的逆命題與否命題互為逆否命題,共真假,∴原命題的否命題也是真命題;故A錯誤;

對于④,方程x22x+20的兩根,則x1,x2可以是一橢圓與一雙曲線的離心率,

∴命題若x1,x2是方程x22x+20的兩根,則x1,x2,可以是一橢圓與一雙曲線的離心率為真命題,則其逆否命題也為真命題.故D錯誤;

綜上可知,C正確.

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(,為自然對數(shù)的底數(shù))

(1)若,求函數(shù)的極值;

(2)若是函數(shù)的一個極值點(diǎn),試求出關(guān)于的關(guān)系式(用表示),并確定的單調(diào)區(qū)間;

(3)在(2)的條件下,設(shè),函數(shù).若存在使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某蛋糕店計(jì)劃按天生產(chǎn)一種面包,每天生產(chǎn)量相同,生產(chǎn)成本每個6元,售價每個8元,未售出的面包降價處理,以每個5元的價格當(dāng)天全部處理完.

(1)若該蛋糕店一天生產(chǎn)30個這種面包,求當(dāng)天的利潤(單位:元)關(guān)于當(dāng)天需求量(單位:個,)的函數(shù)解析式;

(2)蛋糕店記錄了30天這種面包的日需求量(單位:個),整理得下表:

日需求量

28

29

30

31

32

33

頻數(shù)

3

4

6

6

7

4

假設(shè)蛋糕店在這30天內(nèi)每天生產(chǎn)30個這種面包,求這30天的日利潤(單位:元)的平均數(shù)及方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐,平面,為線段上一點(diǎn)不在端點(diǎn).

(1)當(dāng)為中點(diǎn)時,,求證:

(2)當(dāng)中點(diǎn)時,是否存在,使得直線與平面所成角的正弦值為,若存在求出M的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過原點(diǎn)的動直線l與圓相交于不同的兩點(diǎn)A,B.

(1)求線段AB的中點(diǎn)M的軌跡C的方程;

(2)是否存在實(shí)數(shù)k,使得直線L:y=k(x﹣4)與曲線C只有一個交點(diǎn)?若存在,求出k的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】公安部交管局修改后的酒后違法駕駛機(jī)動車的行為分成兩個檔次:“酒后駕車”和“醉酒駕車”,其判斷標(biāo)準(zhǔn)是駕駛?cè)藛T每100毫升血液中的酒精含量X毫克當(dāng)20≤X<80時,認(rèn)定為酒后駕車;當(dāng)X≥80時,認(rèn)定為醉酒駕車重慶市公安局交通管理部門在對G42高速路我市路段的一次隨機(jī)攔查行動中,依法檢測了200輛機(jī)動車駕駛員的每100毫升血液中的酒精含量酒精含量X(單位:毫克)的統(tǒng)計(jì)結(jié)果如下表:

X

[0,20)

[20,40)

[40,60)

[60,80)

[80,100)

[100,+∞)

人數(shù)

t

1

1

1

1

1

依據(jù)上述材料回答下列問題:

(1)求t的值;

(2)從酒后違法駕車的司機(jī)中隨機(jī)抽取2人,求這2人中含有醉酒駕車司機(jī)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱中,點(diǎn)是棱的中點(diǎn).

(Ⅰ)求證:平面;

(Ⅱ)若,在棱上是否存在點(diǎn),使二面角的大小為,若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ab為空間兩條互相垂直的直線,等腰直角三角形的直角邊所在直線與ab都垂直,斜邊為旋轉(zhuǎn)軸選擇,有下列結(jié)論:

①當(dāng)直線a60°角時,b30°角;

②當(dāng)直線a60°角時,b60°角;

③直線a所成角的最小值為45°;

④直線a所成角的最大值為60°;

其中正確的是_______.(填寫所以正確結(jié)論的編號).

A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了讓稅收政策更好的為社會發(fā)展服務(wù),國家在修訂《中華人民共和國個人所得稅法》之后,發(fā)布了《個人所得稅專項(xiàng)附加扣除暫行辦法》,明確專項(xiàng)附加扣除就是子女教育、繼續(xù)教育大病醫(yī)療、住房貸款利息、住房租金贈養(yǎng)老人等費(fèi)用,并公布了相應(yīng)的定額扣除標(biāo)準(zhǔn),決定自201911日起施行,某機(jī)關(guān)為了調(diào)查內(nèi)部職員對新個稅方案的滿意程度與年齡的關(guān)系,通過問卷調(diào)查,整理數(shù)據(jù)得如下2×2列聯(lián)表:

40歲及以下

40歲以上

合計(jì)

基本滿意

15

10

25

很滿意

25

30

55

合計(jì)

40

40

80

1)根據(jù)列聯(lián)表,能否有85%的把握認(rèn)為滿意程度與年齡有關(guān)?

2)若已經(jīng)在滿意程度為基本滿意的職員中用分層抽樣的方式選取了5名職員,現(xiàn)從這5名職員中隨機(jī)選取3名進(jìn)行面談求面談的職員中恰有2名年齡在40歲及以下的概率.

附:,其中.

參考數(shù)據(jù):

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

同步練習(xí)冊答案