【題目】已知中心在原點(diǎn)O,焦點(diǎn)在x軸上的橢圓,離心率 ,且橢圓過點(diǎn) . (Ⅰ)求橢圓的方程;
(Ⅱ)橢圓左,右焦點(diǎn)分別為F1 , F2 , 過F2的直線l與橢圓交于不同的兩點(diǎn)A、B,則△F1AB的內(nèi)切圓的面積是否存在最大值?若存在,求出這個(gè)最大值及此時(shí)的直線方程;若不存在,請(qǐng)說明理由.

【答案】解:(Ⅰ)由題意可設(shè)橢圓方程為

,解得:a2=4,b2=3.

∴橢圓方程為 ;

(Ⅱ)設(shè)A(x1,y1),B(x2,y2),不妨y1>0,y2<0,設(shè)△F1AB的內(nèi)切圓的半徑R,

則△F1AB的周長(zhǎng)=4a=8, (|AB|+|F1A|+|F1B|)R=4R,

因此 最大,R就最大,

由題知,直線l的斜率不為零,可設(shè)直線l的方程為x=my+1,

,得(3m2+4)y2+6my﹣9=0,

= ,

,則m2=t2﹣1,

=

令f(t)=3t+ ,則f′(t)=3﹣

當(dāng)t≥1時(shí),f′(t)≥0,f(t)在[1,+∞)上單調(diào)遞增,有f(t)≥f(1)=4, ≤3,

即當(dāng)t=1,m=0時(shí), ≤3,

=4R,得Rmax= ,這時(shí)所求內(nèi)切圓面積的最大值為

故直線l:x=1,△F1AB內(nèi)切圓面積的最大值為


【解析】(Ⅰ)設(shè)橢圓方程,由題意列關(guān)于a,b,c的方程組求解a,b,c的值,則橢圓方程可求;(Ⅱ)設(shè)A(x1,y1),B(x2,y2),不妨設(shè)y1>0,y2<0,設(shè)△F1AB的內(nèi)切圓的徑R,則△F1AB的周長(zhǎng)=4a=8, = (|AB|+|F1A|+|F1B|)R=4R,因此 最大,R就最大.設(shè)直線l的方程為x=my+1,與橢圓方程聯(lián)立,從而可表示△F1AB的面積,利用換元法,借助于導(dǎo)數(shù),即可求得結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司有A、B、C、D、E五輛汽車,其中A、B兩輛汽車的車牌尾號(hào)均為1,C、D兩輛汽車的車牌尾號(hào)均為2,E車的車牌尾號(hào)為6.已知在非限行日,每輛車可能出車或不出車,A、B、E三輛汽車每天出車的概率均為 ,C、D兩輛汽車每天出車的概率均為 ,五輛汽車是否出車相互獨(dú)立,該公司所在地區(qū)汽車限行規(guī)定如下:

工作日

星期一

星期二

星期三

星期四

星期五

限行車牌尾號(hào)

0和5

1和6

2和7

3和8

4和9

例如,星期一禁止車牌尾號(hào)為0和5的車輛通行.
(1)求該公司在星期一至少有2輛汽車出車的概率;
(2)設(shè)X表示該公司在星期二和星期三兩天出車的車輛數(shù)之和,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .
(1)當(dāng) 時(shí),求函數(shù) 的單調(diào)區(qū)間和極值;
(2)求函數(shù) 在區(qū)間 上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的一個(gè)焦點(diǎn)與拋物線 的焦點(diǎn) 重合,且點(diǎn) 到直線 的距離為 , 的公共弦長(zhǎng)為 .
(1)求橢圓 的方程及點(diǎn) 的坐標(biāo);
(2)過點(diǎn) 的直線 交于 兩點(diǎn),與 交于 兩點(diǎn),求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)F2 , P分別為雙曲線 的右焦點(diǎn)與右支上的一點(diǎn),O為坐標(biāo)原點(diǎn),若2 |,且 ,則該雙曲線的離心率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=2AD,E為邊AB的中點(diǎn),將△ADE沿直線DE翻轉(zhuǎn)成△A1DE(A1平面ABCD),若M、O分別為線段A1C、DE的中點(diǎn),則在△ADE翻轉(zhuǎn)過程中,下列說法錯(cuò)誤的是(
A.與平面A1DE垂直的直線必與直線BM垂直
B.異面直線BM與A1E所成角是定值
C.一定存在某個(gè)位置,使DE⊥MO
D.三棱錐A1﹣ADE外接球半徑與棱AD的長(zhǎng)之比為定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A是拋物線y2=4x上的一點(diǎn),以點(diǎn)A和點(diǎn)B(2,0)為直徑的圓C交直線x=1于M,N兩點(diǎn).直線l與AB平行,且直線l交拋物線于P,Q兩點(diǎn).
(Ⅰ)求線段MN的長(zhǎng);
(Ⅱ)若 =﹣3,且直線PQ與圓C相交所得弦長(zhǎng)與|MN|相等,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面α⊥平面β,α∩β=直線l,A,C是α內(nèi)不同的兩點(diǎn),B,D是β內(nèi)不同的兩點(diǎn),且A,B,C,D直線l,M,N分別是線段AB,CD的中點(diǎn).下列判斷正確的是(
A.當(dāng)|CD|=2|AB|時(shí),M,N兩點(diǎn)不可能重合
B.M,N兩點(diǎn)可能重合,但此時(shí)直線AC與直線l不可能相交
C.當(dāng)AB與CD相交,直線AC平行于l時(shí),直線BD可以與l相交
D.當(dāng)AB,CD是異面直線時(shí),MN可能與l平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】漳州水仙鱗莖碩大,箭多花繁,色美香郁,素雅娟麗,有“天下水仙數(shù)漳州”之美譽(yù).現(xiàn)某水仙花雕刻師受雇每天雕刻250粒水仙花,雕刻師每雕刻一?少1.2元,如果雕刻師當(dāng)天超額完成任務(wù),則超出的部分每粒多賺0.5元;如果當(dāng)天未能按量完成任務(wù),則按完成的雕刻量領(lǐng)取當(dāng)天工資. (Ⅰ)求雕刻師當(dāng)天收入(單位:元)關(guān)于雕刻量n(單位:粒,n∈N)的函數(shù)解析式f(n);
(Ⅱ)該雕刻師記錄了過去10天每天的雕刻量n(單位:粒),整理得如表:

雕刻量n

210

230

250

270

300

頻數(shù)

1

2

3

3

1

以10天記錄的各雕刻量的頻率作為各雕刻量發(fā)生的概率.
(。┰诋(dāng)天的收入不低于276元的條件下,求當(dāng)天雕刻量不低于270個(gè)的概率;
(ⅱ)若X表示雕刻師當(dāng)天的收入(單位:元),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案