已知圓C:x2+y2+2x-4y+3=0.
(1)若圓C的切線在x軸和y軸上的截距相等,求此切線的方程;
(2)從圓C外一點(diǎn)P(x1,y1)向該圓引一條切線,切點(diǎn)為M,O為坐標(biāo)原點(diǎn),且有|PM|=|PO|,求使得|PM|取得最小值的點(diǎn)P的坐標(biāo).

(1)y=(2±)x或x+y+1=0或x+y-3=0;(2).

解析試題分析:(1)圓的方程化為標(biāo)準(zhǔn)方程,求出圓心與半徑,再分類討論,設(shè)出切線方程,利用直線是切線建立方程,即可得出結(jié)論;
(2)先確定P的軌跡方程,再利用要使|PM|最小,只要|PO|最小即可.
試題解析:(1)將圓C配方得:(x+1)2+(y-2)2=2.
①當(dāng)直線在兩坐標(biāo)軸上的截距為零時(shí),設(shè)直線方程為y=kx,由直線與圓相切得:y=(2±)x.
②當(dāng)直線在兩坐標(biāo)軸上的截距不為零時(shí),設(shè)直線方程為x+y-a=0,由直線與圓相切得:x+y+1=0或x+y-3=0.故切線方程為y=(2±)x或x+y+1=0或x+y-3=0.
(2)由|PO|=|PM|,得:
=(x1+1)2+(y1-2)2-2⇒2x1-4y1+3=0.即點(diǎn)P在直線l:2x-4y+3=0上,當(dāng)|PM|取最小值時(shí)即|OP|取得最小值,直線OP⊥l.
∴直線OP的方程為:2x+y=0.解方程組得P點(diǎn)坐標(biāo)為.
考點(diǎn):直線和圓的方程的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓上的點(diǎn)到橢圓右焦點(diǎn)的最大距離為,離心率,直線過(guò)點(diǎn)與橢圓交于兩點(diǎn).
(1)求橢圓的方程;
(2)上是否存在點(diǎn),使得當(dāng)轉(zhuǎn)到某一位置時(shí),有成立?若存在,求出所有點(diǎn)的坐標(biāo)與的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(1)求經(jīng)過(guò)點(diǎn)A(3,2),B(-2,0)的直線方程。
(2)求過(guò)點(diǎn)P(-1,3),并且在兩軸上的截距相等的直線方程;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

直線y=2x是△ABC中∠C的平分線所在的直線,且A、B的坐標(biāo)分別為A(-4,2)、B(3,1),求頂點(diǎn)C的坐標(biāo)并判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

求經(jīng)過(guò)點(diǎn)A(-2,2)且在第二象限與兩個(gè)坐標(biāo)軸圍成的三角形面積最小時(shí)的直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

過(guò)點(diǎn)M(0,1)作一條直線,使它被兩條直線l1:x-3y+10=0,l2:2x+y-8=0所截得的線段恰好被M點(diǎn)平分.求此直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知直線經(jīng)過(guò)直線與直線的交點(diǎn),且垂直于直線.
(1)求直線的方程;
(2)求直線關(guān)于原點(diǎn)對(duì)稱的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題


“a=1”是“直線x+y=0和直線x-ay=0互相垂直”的_________________條件 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(2013•湖北)如圖,已知橢圓C1與C2的中心在坐標(biāo)原點(diǎn)O,長(zhǎng)軸均為MN且在x軸上,短軸長(zhǎng)分別為2m,2n(m>n),過(guò)原點(diǎn)且不與x軸重合的直線l與C1,C2的四個(gè)交點(diǎn)按縱坐標(biāo)從大到小依次為A,B,C,D,記,△BDM和△ABN的面積分別為S1和S2
(1)當(dāng)直線l與y軸重合時(shí),若S1=λS2,求λ的值;
(2)當(dāng)λ變化時(shí),是否存在與坐標(biāo)軸不重合的直線l,使得S1=λS2?并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案