【題目】在平面直角坐標系中,橢圓的左、右焦點分別為離心率為,兩準線之間的距離為8,在橢圓上,且位于第一象限,過點作直線的垂線,過點作直線的垂線

(1)求橢圓的標準方程;

(2)若直線的交點在橢圓,求點的坐標.

【答案】(1);(2).

【解析】試題分析:(1)由橢圓的離心率公式求得,由橢圓的準線方程,,即可求得的值,即可求得橢圓方程;(2)點坐標,分別求得直線的斜率及直線的斜率,則可求得的斜率及方程,聯(lián)立求得點坐標,滿足橢圓方程,求得結合在橢圓E上,聯(lián)立即可求得點坐標.

試題解析:(1)設橢圓的半焦距為c.因為橢圓E的離心率為,兩準線之間的距離為8,所以,,解得,于是,因此橢圓E的標準方程是

(2)由(1)知,,.設,因為為第一象

限的點,故.當時,相交于,與題設不符.

時,直線的斜率為,直線的斜率為直線的斜率為,直線的斜率為,

從而直線的方程,① 直線的方程,②

由①②,解得,所以.因為點在橢圓上,由對稱性,得,即.又在橢圓E上,故

,解得;,無解.因此點P的坐標為

【方法點晴】本題主要考查待定系數(shù)求橢圓方程以及直線與橢圓的位置關系,屬于難題.用待定系數(shù)法求橢圓方程的一般步驟;①作判斷:根據(jù)條件判斷橢圓的焦點在軸上,還是在軸上,還是兩個坐標軸都有可能;②設方程:根據(jù)上述判斷設方程 ;③找關系:根據(jù)已知條件,建立關于、、的方程組;④得方程:解方程組,將解代入所設方程,即為所求.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中.

(Ⅰ)函數(shù)的圖象能否與軸相切?若能,求出實數(shù),若不能,請說明理由;

(Ⅱ)求最大的整數(shù),使得對任意,不等式恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為探索課堂教學改革,江門某中學數(shù)學老師用傳統(tǒng)教學和導學案兩種教學方式,在甲、乙兩個平行班進行教學實驗。為了解教學效果,期末考試后,分別從兩個班級各隨機抽取20名學生的成績進行統(tǒng)計,得到如下莖葉圖。記成績不低于70分者為成績優(yōu)良”。

Ⅰ)請大致判斷哪種教學方式的教學效果更佳,并說明理由;

Ⅱ)構造一個教學方式與成績優(yōu)良列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.05的前提下認為成績優(yōu)良與教學方式有關”?

(附:,其中是樣本容量)

獨立性檢驗臨界值表:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動點到定點的距離比到定直線的距離小1.

(Ⅰ)求點的軌跡的方程;

(Ⅱ)過點任意作互相垂直的兩條直線,分別交曲線于點.設線段, 的中點分別為,求證:直線恒過一個定點;

(Ⅲ)在(Ⅱ)的條件下,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】私家車的尾氣排放是造成霧霾天氣的重要因素之一,因此在生活中我們應該提倡低碳生活,少開私家車,盡量選擇綠色出行方式,為預防霧霾出一份力.為此,很多城市實施了機動車車尾號限行,我市某報社為了解市區(qū)公眾對車輛限行的態(tài)度,隨機抽查了人,將調查情況進行整理后制成下表:

年齡(歲)

頻數(shù)

贊成人數(shù)

)完成被調查人員的頻率分布直方圖.

)若從年齡在,的被調查者中各隨機選取人進行追蹤調查,求恰有人不贊成的概率.

)在在條件下,再記選中的人中不贊成車輛限行的人數(shù)為,求隨機變量的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在Rt中, ,點分別在線段、上,且,將沿折起到的位置,使得二面角的大小為.

(1)求證:;

(2)當點為線段的靠近點的三等分點時,求與平面 所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中, 分別是角的對邊,已知,現(xiàn)有以下判斷:

不可能等于15; ②

③作關于的對稱點的最大值是;

④若為定點,則動點的軌跡圍成的封閉圖形的面積是。請將所有正確的判斷序號填在橫線上______________。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時,求的最小值;

(2)若上為單調函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=sin 2xcos2x.

(1)求f(x)的周期和最小值;

(2)將函數(shù)f(x)的圖像上每一點的橫坐標伸長到原來的兩倍(縱坐標不變),再把所得圖像上的所有點向上平移個單位,得到函數(shù)g(x)的圖像,當時,求g(x)的值域.

查看答案和解析>>

同步練習冊答案