精英家教網 > 高中數學 > 題目詳情
(2013•長春一模)已知:x>0,y>0,且
2
x
+
1
y
=1
,若x+2y>m2+2m恒成立,則實數m的取值范圍是( 。
分析:x+2y>m2+2m恒成立,即m2+2m<x+2y恒成立,只需求得x+2y的最小值即可.
解答:解:∵x>0,y>0,且
2
x
+
1
y
=1
,
∴x+2y=(x+2y)(
2
x
+
1
y
)=2+
4y
x
+
x
y
+2≥8(當且僅當x=4,y=2時取到等號).
∴(x+2y)min=8.
∴x+2y>m2+2m恒成立,即m2+2m<(x+2y)min=8,
解得:-4<m<2.
故選D.
點評:本題考查基本不等式與函數恒成立問題,將問題轉化為求x+2y的最小值是關鍵,考查學生分析轉化與應用基本不等式的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•長春一模)已知函數f(x)=ex(ax2-2x-2),a∈R且a≠0.
(1)若曲線y=f(x)在點P(2,f(2))處的切線垂直于y軸,求實數a的值;
(2)當a>0時,求函數f(|sinx|)的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•長春一模)橢圓
 x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
3
2
,右焦點到直線x+y+
6
=0
的距離為2
3
,過M(0,-1)的直線l交橢圓于A,B兩點.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 若直線l交x軸于N,
NA
=-
7
5
NB
,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•長春一模)定義在R上的函數f(x)滿足f(x)+f(x+5)=16,當x∈(-1,4]時,f(x)=x2-2x,則函數f(x)在[0,2013]上的零點個數是
604
604

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•長春一模)在正項等比數列{an}中,已知a1a2a3=4,a4a5a6=12,an-1anan+1=324,則n=(  )

查看答案和解析>>

同步練習冊答案