【題目】已知△ABC的兩條高線所在直線方程為2x-3y+1=0和xy=0,頂點A(1,2).

求(1)BC邊所在的直線方程;

(2)△ABC的面積.

【答案】(1) 2x+3y+7=0;(2).

【解析】

(1)先判斷A點不在兩條高線上,再利用垂直關系可得AB、AC的方程,進而通過聯(lián)立可得解;

2)分別求|BC|A點到BC邊的距離d,利用SABC×d×|BC|即可得解.

(1)∵A點不在兩條高線上,由兩條直線垂直的條件可設kAB=-,kAC=1.

AB、AC邊所在的直線方程為3x+2y-7=0,xy+1=0.

B(7,-7).

C(-2,-1).

BC邊所在的直線方程2x+3y+7=0.

(2)∵|BC|=A點到BC邊的距離d,

SABC×d×|BC|=××

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中正確的是( )

A.a,b是兩條直線,且ab,那么a平行于經(jīng)過b的任何平面

B.若直線a和平面α滿足aα,那么aα內(nèi)的任何直線平行

C.平行于同一條直線的兩個平面平行

D.若直線a,b和平面α滿足ab,aαb不在平面α內(nèi),則bα

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,點在橢圓上,且的面積為.

(1)求該橢圓的標準方程;

(2)過該橢圓的左頂點作兩條相互垂直的直線分別與橢圓相交于不同于點的兩點、,證明:動直線恒過軸上一定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)

1)若函數(shù)上為減函數(shù),求實數(shù)的最小值;

2)若存在,使成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),在點處的切線方程為,求(1)實數(shù)的值;(2)函數(shù)的單調區(qū)間以及在區(qū)間上的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等比數(shù)列的首項是1,公比為3,等差數(shù)列的首項是,公差為1,把中的各項按如下規(guī)則依次插入到的每相鄰兩項之間,構成新數(shù)列,,,,,,,,,…,即在兩項之間依次插入個項,則__________.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AB//CD,且.

(1)證明:平面PAB⊥平面PAD;

(2)若PA=PD=AB=DC, ,求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面幾何中,研究三角形內(nèi)任意一點與三邊的關系時,有真命題:邊長為的正三角形內(nèi)任意一點到各邊的距離之和是定值。類比上述命題,請寫出關于正四面體內(nèi)任意一點與四個面的關系的一個真命題,并給出證明。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在“新零售”模式的背景下,某大型零售公司咪推廣線下分店,計劃在市的區(qū)開設分店,為了確定在該區(qū)開設分店的個數(shù),該公司對該市已開設分店聽其他區(qū)的數(shù)據(jù)作了初步處理后得到下列表格.記表示在各區(qū)開設分店的個數(shù), 表示這個個分店的年收入之和.

(個)

2

3

4

5

6

(百萬元)

2.5

3

4

4.5

6

(1)該公司已經(jīng)過初步判斷,可用線性回歸模型擬合的關系,求關于的線性回歸方程

(2)假設該公司在區(qū)獲得的總年利潤(單位:百萬元)與之間的關系為,請結合(1)中的線性回歸方程,估算該公司應在區(qū)開設多少個分店時,才能使區(qū)平均每個店的年利潤最大?

(參考公式: ,其中

查看答案和解析>>

同步練習冊答案