已知函數(shù).
(1)若函數(shù)為奇函數(shù),求a的值;
(2)若函數(shù)在處取得極大值,求實數(shù)a的值;
(3)若,求在區(qū)間上的最大值.
(1);(2);(3) 當(dāng)時,在取得最大值;
當(dāng)時, 取得最大值.
解析試題分析:(1)首先求出導(dǎo)數(shù):,
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù),.
科目:高中數(shù)學(xué)
來源:
題型:解答題
如圖,已知點,函數(shù)的圖象上的動點在軸上的射影為,且點在點的左側(cè).設(shè),的面積為.
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù)>0)
科目:高中數(shù)學(xué)
來源:
題型:解答題
某商場銷售某種商品的經(jīng)驗表明,該商品每日的銷售量(單位:千克)與銷售價格(單位:元/千克)滿足關(guān)系式其中為常數(shù).己知銷售價格為5元/千克時,每日可售出該商品11千克.
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù).
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù),其中.
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù) (為實常數(shù))
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
代入得:.
因為為奇函數(shù),所以必為偶函數(shù),即,
所以.
(2)首先求出函數(shù)的極大值點.又由題設(shè):函數(shù)在處取得極大值.二者相等,便可得的值.
(3).
由得:.
注意它的兩個零點的差恰好為1,且必有.
結(jié)合導(dǎo)函數(shù)的圖象,可知導(dǎo)函數(shù)的符號,從而得到函數(shù)的單調(diào)區(qū)間和極值點.
試題解析:(1)因為,
所以 2分
由二次函數(shù)奇偶性的定義,因為為奇函數(shù),
所以為偶函數(shù),即,
所以 4分
(2)因為.
令,得,顯然.
所以隨的變化情況如下表:+ 0 - 0 + 遞增
(Ⅰ)設(shè)(其中是的導(dǎo)函數(shù)),求的最大值;
(Ⅱ)求證:當(dāng)時,有;
(Ⅲ)設(shè),當(dāng)時,不等式恒成立,求的最大值.
(Ⅰ)求函數(shù)的解析式及的取值范圍;
(Ⅱ)求函數(shù)的最大值.
(1)若的一個極值點,求的值;
(2)上是增函數(shù),求a的取值范圍
(3)若對任意的總存在>成立,求實數(shù)m的取值范圍
(1)求的值;
(2)若該商品的成本為3元/千克,試確定銷售價格的值,使商場每日銷售該商品所獲得利潤最大.
(I)求f(x)的單調(diào)區(qū)間及極值;
(II)若關(guān)于x的不等式恒成立,求實數(shù)a的集合.
(1)若對一切x∈R,≥1恒成立,求a的取值集合;
(2)在函數(shù)的圖像上取定兩點,,記直線AB的斜率 為k,問:是否存在x0∈(x1,x2),使成立?若存在,求的取值范圍;若不存在,請說明理由.
(1)當(dāng)時,求函數(shù)在上的最大值及相應(yīng)的值;
(2)當(dāng)時,討論方程根的個數(shù)
(3)若,且對任意的,都有,求實數(shù)a的取值范圍
版權(quán)聲明:本站所有文章,圖片來源于網(wǎng)絡(luò),著作權(quán)及版權(quán)歸原作者所有,轉(zhuǎn)載無意侵犯版權(quán),如有侵權(quán),請作者速來函告知,我們將盡快處理,聯(lián)系qq:3310059649。
ICP備案序號: 滬ICP備07509807號-10 鄂公網(wǎng)安備42018502000812號