已知函數(shù)
(Ⅰ)設(shè)(其中的導(dǎo)函數(shù)),求的最大值;
(Ⅱ)求證:當(dāng)時(shí),有;
(Ⅲ)設(shè),當(dāng)時(shí),不等式恒成立,求的最大值.

(Ⅰ)取得最大值;(Ⅱ)見解析;(Ⅲ)整數(shù)的最大值是.

解析試題分析:(Ⅰ)通過求的導(dǎo)函數(shù)處理函數(shù)的單調(diào)性,從而確定在時(shí),取得最大值;(Ⅱ)由(Ⅰ)可知當(dāng)時(shí),,從而有.(Ⅲ)先由當(dāng)時(shí),不等式恒成立轉(zhuǎn)化為對任意恒成立,設(shè),通過導(dǎo)函數(shù)求出的單調(diào)性從而得出,整數(shù)的最大值是.
試題解析:(Ⅰ),所以 .  
當(dāng)時(shí),;當(dāng)時(shí),
因此,上單調(diào)遞增,在上單調(diào)遞減.
因此,當(dāng)時(shí),取得最大值;                 3分
(Ⅱ)當(dāng)時(shí),.由(1)知:當(dāng)時(shí),,即
因此,有.      7分
(Ⅲ)不等式化為所以
對任意恒成立.令,
,令,則,
所以函數(shù)上單調(diào)遞增.因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/cd/d/1ptdv2.png" style="vertical-align:middle;" />,
所以方程上存在唯一實(shí)根,且滿足
當(dāng),即,當(dāng),即
所以函數(shù)上單調(diào)遞減,在上單調(diào)遞增.
所以
所以.故整數(shù)的最大值是.        13分
考點(diǎn):1.利用導(dǎo)數(shù)處理函數(shù)的單調(diào)性和最值;2.利用導(dǎo)數(shù)處理不等式恒成立問題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),其中,
(Ⅰ)若的最小值為,試判斷函數(shù)的零點(diǎn)個(gè)數(shù),并說明理由;
(Ⅱ)若函數(shù)的極小值大于零,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,某自來水公司要在公路兩側(cè)鋪設(shè)水管,公路為東西方向,在路北側(cè)沿直線鋪設(shè)線路l1,在路南側(cè)沿直線鋪設(shè)線路l2,現(xiàn)要在矩形區(qū)域ABCD內(nèi)沿直線將l1與l2接通.已知AB = 60m,BC = 80m,公路兩側(cè)鋪設(shè)水管的費(fèi)用為每米1萬元,穿過公路的EF部分鋪設(shè)水管的費(fèi)用為每米2萬元,設(shè)∠EFB= α,矩形區(qū)域內(nèi)的鋪設(shè)水管的總費(fèi)用為W.

(1)求W關(guān)于α的函數(shù)關(guān)系式;
(2)求W的最小值及相應(yīng)的角α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某出版社新出版一本高考復(fù)習(xí)用書,該書的成本為5元/本,經(jīng)銷過程中每本書需付給代理商m元(1≤m≤3)的勞務(wù)費(fèi),經(jīng)出版社研究決定,新書投放市場后定價(jià)為元/本(9≤≤11),預(yù)計(jì)一年的銷售量為萬本.
(1)求該出版社一年的利潤(萬元)與每本書的定價(jià)的函數(shù)關(guān)系式;
(2)當(dāng)每本書的定價(jià)為多少元時(shí),該出版社一年的利潤最大,并求出的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù).
(1)當(dāng)時(shí),求函數(shù)的最大值;
(2)令,其圖象上存在一點(diǎn),使此處切線的斜率,求實(shí)數(shù)的取值范圍;
(3)當(dāng),時(shí),方程有唯一實(shí)數(shù)解,求正數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若,對定義域內(nèi)任意x,均有恒成立,求實(shí)數(shù)a的取值范圍?
(Ⅲ)證明:對任意的正整數(shù),恒成立。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),.
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)設(shè),,為函數(shù)的圖象上任意不同兩點(diǎn),若過,兩點(diǎn)的直線的斜率恒大于,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè),函數(shù).
(1)若,求曲線在點(diǎn)處的切線方程;
(2)若無零點(diǎn),求實(shí)數(shù)的取值范圍;
(3)若有兩個(gè)相異零點(diǎn),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)若函數(shù)為奇函數(shù),求a的值;
(2)若函數(shù)處取得極大值,求實(shí)數(shù)a的值;
(3)若,求在區(qū)間上的最大值.

查看答案和解析>>

同步練習(xí)冊答案